植物学报

• • 上一篇    下一篇

MicroTom番茄非组培快速遗传转化方法的建立

王伟坤1, 傅雯倩1, 洪秋梅1, 郑杨1, 于嘉慧1, 王艳1, 刘良淼1, 杨莉1, 2, 王长春1, 2*, 郭卫东1, 2*   

  1. 1浙江师范大学生命科学学院, 金华 321004; 2金华市特色经济植物生物技术重点实验室, 金华 321004
  • 收稿日期:2025-04-08 修回日期:2025-06-06 出版日期:2025-07-02 发布日期:2025-07-02
  • 通讯作者: 王长春, 郭卫东
  • 基金资助:
    国家自然科学基金(No.32470174)和浙江省农业新品种选育重大科技专项(No.2021C02066-9)

A Rapid In Planta Genetic Transformation System for MicroTom Tomato

1College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; 2Key Laboratory of Biotechnology on Specialty Economic Plants of Jinhua, Jinhua 321004, China   

  • Received:2025-04-08 Revised:2025-06-06 Online:2025-07-02 Published:2025-07-02
  • Contact: Changchun Wang, Weidong Guo

摘要: MicroTom番茄(Solanum lycopersicum cv. ‘MicroTom’)是一种矮化模式植物, 因其具有较短的生命周期和清晰的遗传背景而广泛应用于植物基因功能研究。传统基于组培的MicroTom番茄遗传转化技术存在效率低、转化周期长及操作复杂等缺陷, 限制了该体系的应用。该研究以2周龄MicroTom实生苗为材料, 在切除顶端子叶与真叶后, 用根癌农杆菌(Agrobacterium tumefaciens)菌液浸润下胚轴切口并诱导再生芽, 成功构建了一套高效的MicroTom番茄非组培遗传转化体系。结果显示, 切口处再生芽阳性率为28.6%, 4–5个月即可收获T0代番茄种子, T1代植株中外源基因表达比例达73.5%。与传统组培遗传转化体系相比, 该MicroTom番茄非组培转化体系转化效率显著提高, 转化时间短且操作流程简捷, 为番茄果实性状基因功能解析提供了高效的技术平台, 同时对加快番茄分子育种进程具有重要实践意义。

关键词: MicroTom番茄, 遗传转化, 非组培, 基因功能, 分子育种

Abstract: MicroTom tomato (Solanum lycopersicum cv. ‘MicroTom’) is widely used for functional characterization due to its short life cycle and clear genetic background. However, the traditional genetic transformation system of MicroTom based on tissue culture is constrained by low efficiency, long transformation period and complex operation. Based on the somatic cell reprogramming mechanism triggered by wound signaling, this study established an efficient and rapid in planta genetic transformation system for MicroTom tomato. Wound hypocotyl were created by removing apical cotyledons and true leaves from two-week-old seedlings, followed by direct inoculation with Agrobacterium tumefaciens carrying binary vector pCY-H05251-VcDAD2-EGFP (enhanced green fluorescent protein) to induce shoot regeneration. Results showed that a 28.6% PCR-based positive efficiency of regenerated shoots in the T0 generation, with seeds derived within 4–5 months post inoculation. Antibiotic and fluorescence screening revealed approximate 73.5% lines in the T1-generation expressed the fused EGFP protein. Compared to conventional tissue culture-dependent transformation systems, this protocol enhanced transformation efficiency, shortened transformation period, and simplified sterile operational procedures. The in planta genetic transformation system provides a robust platform for functional genomics studies, and significantly lowers technical barriers in tomato genetic breeding.

Key words: MicroTom tomato, genetic transformation, in planta, gene function, molecular breeding