植物学报 ›› 2021, Vol. 56 ›› Issue (5): 559-572.DOI: 10.11983/CBB21078
穆丹1, 岂泽华1, 李沁1,2, 梁可欣1, 华绍贵1, 朱星雨1, 焦梦婕1, 饶玉春2,*(), 孙廷哲1,*(
)
收稿日期:
2021-05-08
接受日期:
2021-08-09
出版日期:
2021-09-01
发布日期:
2021-08-31
通讯作者:
饶玉春,孙廷哲
作者简介:
confucian007@126.com基金资助:
Dan Mu1, Zehua Qi1, Qin Li1,2, Kexin Liang1, Shaogui Hua1, Xingyu Zhu1, Mengjie Jiao1, Yuchun Rao2,*(), Tingzhe Sun1,*(
)
Received:
2021-05-08
Accepted:
2021-08-09
Online:
2021-09-01
Published:
2021-08-31
Contact:
Yuchun Rao,Tingzhe Sun
摘要:
茶树(Camellia sinensis)是我国重要的经济作物。小贯小绿叶蝉(Empoasca onukii)是为害茶树的主要害虫之一。叶蝉三棒缨小蜂(Stethynium empoascae)是小贯小绿叶蝉的主要卵寄生蜂, 但茶树花对叶蝉三棒缨小蜂的引诱机制尚不明确。基于析因设计的方差分析结果显示, 茶树花可引诱天敌叶蝉三棒缨小蜂, 显著缩短其寄生行为的搜寻时间。茶树花可显著增强叶蝉为害茶梢对缨小蜂的吸引作用, 而对健康茶梢的增强效应不显著。基于气相色谱-质谱(GC-MS)的结果显示, 健康茶梢中的挥发物种类和相对含量较少, 而叶蝉为害茶梢和茶树花中挥发物种类和相对含量显著增多。偏最小二乘法判别分析(PLS-DA)结果显示, 茶树花挥发物具有明显的聚类特征。变量重要性投影结果表明, 17种茶树花挥发物在判别分析中可能起重要作用。行为测定结果显示, α-水芹烯、顺式氧化芳樟醇、反式氧化芳樟醇、苯甲醛和苯乙酮对叶蝉三棒缨小蜂具有显著的引诱效果。研究初步阐明了茶树花通过释放挥发物引诱叶蝉三棒缨小蜂的机制, 为制定叶蝉的生物防治策略提供了理论依据。
穆丹, 岂泽华, 李沁, 梁可欣, 华绍贵, 朱星雨, 焦梦婕, 饶玉春, 孙廷哲. 茶树花挥发物对叶蝉三棒缨小蜂的引诱增强效应. 植物学报, 2021, 56(5): 559-572.
Dan Mu, Zehua Qi, Qin Li, Kexin Liang, Shaogui Hua, Xingyu Zhu, Mengjie Jiao, Yuchun Rao, Tingzhe Sun. Enhanced Attraction of Mymarids (Stethynium empoascae) by Volatiles from Tea Flowers. Chinese Bulletin of Botany, 2021, 56(5): 559-572.
Factor | Level A | Level B |
---|---|---|
Infestation | Healthy tea shoots (-) | Infested tea shoots (+) |
Tea flower | Absent (-) | Present (+) |
Mating status | Virgin mymarid (-) | Mated mymarid (+) |
表1 析因设计方案
Table 1 Details for factorial design
Factor | Level A | Level B |
---|---|---|
Infestation | Healthy tea shoots (-) | Infested tea shoots (+) |
Tea flower | Absent (-) | Present (+) |
Mating status | Virgin mymarid (-) | Mated mymarid (+) |
Group | Sum of squares | df | Mean square | F | p value |
---|---|---|---|---|---|
Tea flower | 4785.1562 | 1 | 4785.1562 | 42.5105 | 9.6614 × 10-10** |
Infestation | 3001.5563 | 1 | 3001.5563 | 26.6653 | 7.4251 × 10-7** |
Mating status | 1531.4062 | 1 | 1531.4062 | 13.6047 | 0.0003** |
Tea flower × Infestation | 693.0563 | 1 | 693.0563 | 6.1570 | 0.0142* |
Tea flower × Mating status | 94.5562 | 1 | 94.5562 | 0.8400 | 0.3608 |
Infestation × Mating status | 45.1562 | 1 | 45.1562 | 0.5274 | |
Sum of squares for error (SSE) | 17222.3063 | 153 | 112.5641 | ||
Total | 27373.1938 | 159 |
表2 析因设计方差分析
Table 2 Analysis of variance table for factorial design
Group | Sum of squares | df | Mean square | F | p value |
---|---|---|---|---|---|
Tea flower | 4785.1562 | 1 | 4785.1562 | 42.5105 | 9.6614 × 10-10** |
Infestation | 3001.5563 | 1 | 3001.5563 | 26.6653 | 7.4251 × 10-7** |
Mating status | 1531.4062 | 1 | 1531.4062 | 13.6047 | 0.0003** |
Tea flower × Infestation | 693.0563 | 1 | 693.0563 | 6.1570 | 0.0142* |
Tea flower × Mating status | 94.5562 | 1 | 94.5562 | 0.8400 | 0.3608 |
Infestation × Mating status | 45.1562 | 1 | 45.1562 | 0.5274 | |
Sum of squares for error (SSE) | 17222.3063 | 153 | 112.5641 | ||
Total | 27373.1938 | 159 |
图1 茶树花和叶蝉为害交互效应 (A) 处女蜂; (B) 已交配雌蜂。叶蝉为害和茶树花交互作用对缨小蜂寄生行为的影响。总时间为搜寻、刺探和产卵时间总和(单位: 秒)
Figure 1 Interactions between tea flowers and leafhopper infestation (A) Virgin mymarids; (B) Mated female mymarids. The effect of interaction between leafhopper infestation and tea flowers on the parasitic behaviour of mymarids. The total time represents the summation of searching, spying and spawning time (unit: second).
图2 雌性缨小蜂寄生行为时间分布 (A) 缨小蜂寄生行为的搜寻时间; (B) 刺探产卵时间分布; (C) 总时间分布。ns: 不显著。n=20, ** P<0.01
Figure 2 Time distribution for parasitic behavior of female mymarids (A) Searching time for mymarids during parasitism; (B) Distribution for spying and spawning time; (C) Distribution for total time. ns: Not significant. n=20, ** P<0.01
Group | Mating status | Search time (s) | Spying and spawning time (s) | Total time (s) |
---|---|---|---|---|
Intact tea shoot + tea flower | Virgin | 69.75±2.12 | 10.00±0.30 | 79.75±2.26 |
Mated | 62.50±1.78 | 9.85±0.28 | 72.35±1.88 | |
Intact tea shoot | Virgin | 74.15±3.02 | 10.10±0.28 | 84.25±3.16 |
Mated | 70.90±3.12 | 10.50±0.34 | 81.40±3.10 | |
Tea shoot infested by tea green leafhopper + tea flower | Virgin | 57.35±1.67 | 9.90±0.31 | 67.25±1.70 |
Mated | 49.10±2.26 | 10.10±0.33 | 59.20±2.15 | |
Tea shoot infested by tea green leafhopper | Virgin | 71.50±2.26** | 10.05±0.39 | 81.55±2.36** |
Mated | 63.95±2.10** | 11.15±0.26 | 75.10±1.99** |
表3 不同条件下雌性缨小蜂的寄生行为(平均值±标准误)
Table 3 Parasitic behavior of female mymarids under different conditions (means±SE)
Group | Mating status | Search time (s) | Spying and spawning time (s) | Total time (s) |
---|---|---|---|---|
Intact tea shoot + tea flower | Virgin | 69.75±2.12 | 10.00±0.30 | 79.75±2.26 |
Mated | 62.50±1.78 | 9.85±0.28 | 72.35±1.88 | |
Intact tea shoot | Virgin | 74.15±3.02 | 10.10±0.28 | 84.25±3.16 |
Mated | 70.90±3.12 | 10.50±0.34 | 81.40±3.10 | |
Tea shoot infested by tea green leafhopper + tea flower | Virgin | 57.35±1.67 | 9.90±0.31 | 67.25±1.70 |
Mated | 49.10±2.26 | 10.10±0.33 | 59.20±2.15 | |
Tea shoot infested by tea green leafhopper | Virgin | 71.50±2.26** | 10.05±0.39 | 81.55±2.36** |
Mated | 63.95±2.10** | 11.15±0.26 | 75.10±1.99** |
No. | Retention time (min) | Volatile compounds | Relative contents to internal standard (IS) | ||
---|---|---|---|---|---|
Healthy tea shoots | Tea shoots infested by tea green leafhopper | Tea flower | |||
1 | 3.772 | 4-penten-2-one | - | 4.6679±0.3469 | - |
2 | 4.659 | 2-hexanone | - | - | 0.8337±0.1178 |
3 | 4.973 | 3-hexenal | 0.6775±0.1432 | 0.6500±0.0644 | - |
4 | 6.791 | 3-hexen-1-ol | - | 2.4906±0.2406 | - |
5 | 6.973 | Ethylbenzene | - | - | 0.4284±0.0374 |
6 | 7.045 | Z-4-hexen-1-ol | - | 3.1843±0.2420 | - |
7 | 7.386 | m-xylene | 0.1821±0.0261 | 0.9410±0.1252 | 1.0658±0.1013 |
8 | 8.216 | p-xylene | 0.1388±0.0163 | 0.1685±0.0114 | - |
9 | 8.571 | 2-heptanone | - | - | 15.7670±0.2817 |
10 | 9.415 | Anisole | - | - | 0.4104±0.0497 |
11 | 10.061 | α-pinene | - | 0.0849±0.0098 | 0.0467±0.0056 |
12 | 11.542 | Benzaldehyde | - | 0.2588±0.0264 | 0.5192±0.0615 |
13 | 12.270 | Phenol | - | 0.0915±0.0094 | - |
14 | 13.383 | Decane | - | 0.0952±0.0098 | 0.0424±0.0048 |
15 | 13.595 | Octanal | - | 0.2073±0.0243 | 0.2724±0.0241 |
16 | 13.675 | Z-3-hexenyl acetate | - | 0.3178±0.0256 | - |
17 | 13.694 | E-3-hexenyl acetate | - | 0.6841±0.0819 | - |
18 | 14.841 | 2-ethyl-1-hexanol | 0.1636±0.0303 | 1.5707±0.1608 | 1.0125±0.1174 |
19 | 15.720 | α-phellandrene | - | - | 0.1193±0.0104 |
20 | 16.061 | 2-pentylcyclopentanone | - | - | 4.9586±0.3190 |
21 | 16.373 | α-methyl benzyl alcohol | - | - | 0.100 0±0.0116 |
22 | 16.612 | Acetophenone | 0.0443±0.0077 | 1.0436±0.1229 | 36.3044±3.7347 |
23 | 16.900 | cis-linaloloxide | - | - | 0.0395±0.0043 |
24 | 17.713 | trans-linaloloxide | - | - | 0.1566±0.0081 |
25 | 18.460 | Undecane | 0.0297±0.0048 | 0.2721±0.0370 | 0.2192±0.0237 |
26 | 18.693 | Nonanal | 0.0615±0.0105 | 1.0990±0.1109 | 0.7224±0.0835 |
27 | 20.668 | Camphor | 0.0989±0.0142 | 1.2977±0.1150 | 0.4835±0.0361 |
28 | 21.928 | E-2-nonen-1-ol | 0.0605±0.0074 | 0.2599+0.0135 | 0.1866±0.0158 |
29 | 22.381 | Naphthalene | 0.0305±0.0046 | 0.1241±0.0086 | 0.2344±0.0224 |
30 | 22.662 | cis-3-hexenyl butyrate | - | 0.0891±0.0081 | - |
31 | 23.362 | Dodecane | 0.0176±0.0029 | 0.2182±0.0153 | 0.1281±0.0155 |
32 | 23.654 | Decanal | 0.0995±0.0176 | 1.1579±0.1294 | 0.8621±0.0459 |
33 | 28.027 | Tridecane | - | 0.1029±0.0097 | 0.0625±0.0079 |
/ | 32.223 | Decanoic acid, ethyl ester (IS) | 1.0000 | 1.0000 | 1.0000 |
34 | 32.423 | Tetradecane | 0.0261±0.0055 | 0.3894±0.0406 | 0.1098±0.0113 |
35 | 32.625 | Longifolene-(V4) | - | 0.1815±0.0268 | 0.0307±0.0012 |
36 | 32.822 | Tetradecanal | - | 0.0467±0.0030 | 0.0275±0.0023 |
37 | 34.362 | E-6,10-dimethyl-5,9-undecadien-2-one | 0.0501±0.0065 | 0.5364±0.0388 | 0.2798±0.0269 |
38 | 36.594 | Pentadecane | 0.0704±0.0090 | 0.3610±0.0406 | 0.0922±0.0051 |
39 | 40.532 | Hexadecane | 0.0552±0.0097 | 0.3384±0.0304 | 0.1625±0.0221 |
40 | 44.276 | Heptadecane | - | 0.1006±0.0058 | 0.0437±0.0053 |
41 | 49.699 | 1,2-benzenedicarboxylic acid, bis(2- methylpropyl) ester | - | - | 0.0411±0.0023 |
42 | 50.477 | Homomenthyl salicylate | - | - | 0.0353±0.0041 |
表4 健康茶梢、叶蝉为害茶梢和茶树花挥发物相对含量(平均值±标准误)
Table 4 The relative contents of volatiles in healthy tea shoots, leafhopper-infested tea shoots and tea flowers (means±SE)
No. | Retention time (min) | Volatile compounds | Relative contents to internal standard (IS) | ||
---|---|---|---|---|---|
Healthy tea shoots | Tea shoots infested by tea green leafhopper | Tea flower | |||
1 | 3.772 | 4-penten-2-one | - | 4.6679±0.3469 | - |
2 | 4.659 | 2-hexanone | - | - | 0.8337±0.1178 |
3 | 4.973 | 3-hexenal | 0.6775±0.1432 | 0.6500±0.0644 | - |
4 | 6.791 | 3-hexen-1-ol | - | 2.4906±0.2406 | - |
5 | 6.973 | Ethylbenzene | - | - | 0.4284±0.0374 |
6 | 7.045 | Z-4-hexen-1-ol | - | 3.1843±0.2420 | - |
7 | 7.386 | m-xylene | 0.1821±0.0261 | 0.9410±0.1252 | 1.0658±0.1013 |
8 | 8.216 | p-xylene | 0.1388±0.0163 | 0.1685±0.0114 | - |
9 | 8.571 | 2-heptanone | - | - | 15.7670±0.2817 |
10 | 9.415 | Anisole | - | - | 0.4104±0.0497 |
11 | 10.061 | α-pinene | - | 0.0849±0.0098 | 0.0467±0.0056 |
12 | 11.542 | Benzaldehyde | - | 0.2588±0.0264 | 0.5192±0.0615 |
13 | 12.270 | Phenol | - | 0.0915±0.0094 | - |
14 | 13.383 | Decane | - | 0.0952±0.0098 | 0.0424±0.0048 |
15 | 13.595 | Octanal | - | 0.2073±0.0243 | 0.2724±0.0241 |
16 | 13.675 | Z-3-hexenyl acetate | - | 0.3178±0.0256 | - |
17 | 13.694 | E-3-hexenyl acetate | - | 0.6841±0.0819 | - |
18 | 14.841 | 2-ethyl-1-hexanol | 0.1636±0.0303 | 1.5707±0.1608 | 1.0125±0.1174 |
19 | 15.720 | α-phellandrene | - | - | 0.1193±0.0104 |
20 | 16.061 | 2-pentylcyclopentanone | - | - | 4.9586±0.3190 |
21 | 16.373 | α-methyl benzyl alcohol | - | - | 0.100 0±0.0116 |
22 | 16.612 | Acetophenone | 0.0443±0.0077 | 1.0436±0.1229 | 36.3044±3.7347 |
23 | 16.900 | cis-linaloloxide | - | - | 0.0395±0.0043 |
24 | 17.713 | trans-linaloloxide | - | - | 0.1566±0.0081 |
25 | 18.460 | Undecane | 0.0297±0.0048 | 0.2721±0.0370 | 0.2192±0.0237 |
26 | 18.693 | Nonanal | 0.0615±0.0105 | 1.0990±0.1109 | 0.7224±0.0835 |
27 | 20.668 | Camphor | 0.0989±0.0142 | 1.2977±0.1150 | 0.4835±0.0361 |
28 | 21.928 | E-2-nonen-1-ol | 0.0605±0.0074 | 0.2599+0.0135 | 0.1866±0.0158 |
29 | 22.381 | Naphthalene | 0.0305±0.0046 | 0.1241±0.0086 | 0.2344±0.0224 |
30 | 22.662 | cis-3-hexenyl butyrate | - | 0.0891±0.0081 | - |
31 | 23.362 | Dodecane | 0.0176±0.0029 | 0.2182±0.0153 | 0.1281±0.0155 |
32 | 23.654 | Decanal | 0.0995±0.0176 | 1.1579±0.1294 | 0.8621±0.0459 |
33 | 28.027 | Tridecane | - | 0.1029±0.0097 | 0.0625±0.0079 |
/ | 32.223 | Decanoic acid, ethyl ester (IS) | 1.0000 | 1.0000 | 1.0000 |
34 | 32.423 | Tetradecane | 0.0261±0.0055 | 0.3894±0.0406 | 0.1098±0.0113 |
35 | 32.625 | Longifolene-(V4) | - | 0.1815±0.0268 | 0.0307±0.0012 |
36 | 32.822 | Tetradecanal | - | 0.0467±0.0030 | 0.0275±0.0023 |
37 | 34.362 | E-6,10-dimethyl-5,9-undecadien-2-one | 0.0501±0.0065 | 0.5364±0.0388 | 0.2798±0.0269 |
38 | 36.594 | Pentadecane | 0.0704±0.0090 | 0.3610±0.0406 | 0.0922±0.0051 |
39 | 40.532 | Hexadecane | 0.0552±0.0097 | 0.3384±0.0304 | 0.1625±0.0221 |
40 | 44.276 | Heptadecane | - | 0.1006±0.0058 | 0.0437±0.0053 |
41 | 49.699 | 1,2-benzenedicarboxylic acid, bis(2- methylpropyl) ester | - | - | 0.0411±0.0023 |
42 | 50.477 | Homomenthyl salicylate | - | - | 0.0353±0.0041 |
图3 健康茶梢(A)、叶蝉为害茶梢(B)和茶树花(C)挥发物的GC-MS总离子流 编号1-42同表4。IS: 内标
Figure 3 The GC-MS total ion chromatograms of the volatile components from healthy tea shoots (A), leafhopper-infested tea shoots (B) and tea flowers (C) No.1-42 are the same as Table 4. IS: Internal standard
图4 健康茶梢(ITS)、叶蝉为害茶梢(TSITGL)和茶树花(TF)挥发物种类及比例 (A) 健康茶梢、叶蝉为害茶梢和茶树花挥发物种类的变化; (B) 健康茶梢、叶蝉为害茶梢和茶树花中5类挥发物占比
Figure 4 Categories and proportions of volatiles in intact tea shoots (ITS), leafhopper-infested tea shoots (TSITGL) and tea flowers (TF) (A) Variations in volatile categories in intact tea shoots, leafhopper-infested tea shoots and tea flowers; (B) The proportion of five classes of volatile compounds in intact tea shoots, leafhopper-infested tea shoots and tea flowers
Classification | Volatile compounds |
---|---|
Green leaf volatiles | 3-hexenal, 3-hexen-1-ol, Z-4-hexen-1-ol, Z-3-hexenyl acetate, E-3-hexenyl acetate, 2-ethyl-1-hexanol |
Aromatics | Ethylbenzene, m-xylene, p-xylene, anisole, benzaldehyde, phenol, α-methylbenzyl alcohol, acetophenone, naphthalene, 1,2-benzenedicarboxylic acid, bis (2-methylpropyl) ester |
Terpenes | 4-penten-2-one, α-pinene, α-phellandrene, cis-linaloloxide, trans-linaloloxide, E-2-nonen-1-ol, cis-3- hexenyl butyrate, longifolene-(V4), E-6,10-dimethyl-5,9-undecadien-2-one |
Alkanes | Decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane |
Other | 2-hexanone, 2-heptanone, octanal, 2-pentylcyclopentanone, nonanal, camphor, decanal, tetradecanal, homomenthyl salicylate |
表5 茶树挥发物种类
Table 5 Classification of volatiles from tea plants
Classification | Volatile compounds |
---|---|
Green leaf volatiles | 3-hexenal, 3-hexen-1-ol, Z-4-hexen-1-ol, Z-3-hexenyl acetate, E-3-hexenyl acetate, 2-ethyl-1-hexanol |
Aromatics | Ethylbenzene, m-xylene, p-xylene, anisole, benzaldehyde, phenol, α-methylbenzyl alcohol, acetophenone, naphthalene, 1,2-benzenedicarboxylic acid, bis (2-methylpropyl) ester |
Terpenes | 4-penten-2-one, α-pinene, α-phellandrene, cis-linaloloxide, trans-linaloloxide, E-2-nonen-1-ol, cis-3- hexenyl butyrate, longifolene-(V4), E-6,10-dimethyl-5,9-undecadien-2-one |
Alkanes | Decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane |
Other | 2-hexanone, 2-heptanone, octanal, 2-pentylcyclopentanone, nonanal, camphor, decanal, tetradecanal, homomenthyl salicylate |
图5 挥发物组分的偏最小二乘法判别分析(PLS-DA) (A) 健康茶梢(ITS)、叶蝉为害茶梢(TSITGL)和茶树花(TF)挥发物在前2个隐变量(LV1与LV2)的得分图(椭圆为基于Hotelling T2计算出的95%置信区间); (B) 偏最小二乘法判别分析双标图(实线圆半径为1.0); (C) 各挥发物(编号同表4)的变量重要性投影图(VIP), 上图为挥发物VIP≥1, 下图为挥发物VIP<1。
Figure 5 The partial least square discriminant analysis (PLS-DA) for volatiles (A) Scores with respect to the LV1 and LV2 (the eclipse denotes the 95% confidence interval based on Hotelling T2) for volatiles from intact tea shoots (ITS), leafhopper-infested tea shoots (TSITGL) and tea flowers (TF); (B) The biplot in PLS-DA (the dashed line is a guideline for 1.0); (C) The variable importance for the projection (VIP) for volatiles (the number is the same as Table 4). Volatiles with VIP≥1 are shown on top, and volatiles with VIP<1 are displayed at bottom panel.
图6 Y形管嗅觉仪检测17种茶树花挥发物与液体石蜡引诱缨小蜂的差异 图上方为挥发物编号(编号同表4)。* P<0.05; ** P<0.01
Figure 6 Y-tube olfactometer bioassay to determine the differences between 17 major volatiles from tea flowers and liquid paraffin in attracting mymarids The volatile numbers are shown on top panel (the number is the same as Table 4). * P<0.05; ** P<0.01
[1] | 边磊 (2014). 基于远程寄主定位机理的假眼小绿叶蝉化学生态和物理调控. 博士论文. 北京: 中国农业科学院. pp. 28-46. |
[2] | 陈璇, 胡福良 (2009). 蜜蜂花粉采集行为的调控机制. 昆虫知识 46, 490-494. |
[3] |
董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷 (2020). 转录因子调控植物萜类化合物生物合成研究进展. 植物学报 55, 340-350.
DOI |
[4] | 戈林泉, 胡中卫, 吴进才 (2013). 大豆、玉米与水稻配置对稻田寄生蜂的影响. 应用昆虫学报 50, 921-927. |
[5] | 韩宝瑜, 林金丽, 周孝贵, 章金明 (2009). 假眼小绿叶蝉卵及卵寄生蜂缨小蜂形态观察和寄生率考评. 安徽农业大学学报 36, 13-17. |
[6] | 韩善捷, 潘铖, 韩宝瑜 (2016). 假眼小绿叶蝉为害致茶梢挥发物变化及其引诱微小裂骨缨小蜂效应. 中国生物防治学报 32, 142-148. |
[7] | 李飞, 杨丹, 郑姣莉, 姚经武, 朱志刚, 黄大野, 曹春霞 (2020). 中国茶园主要害虫生物防治研究进展. 湖北农业科学 59(10), 5-9, 22. |
[8] | 李秋玲 (2018). 班氏跳小蜂气味结合蛋白OBPs的结合特性分析. 硕士论文. 武汉: 华中农业大学. pp. 25-28. |
[9] | 林金丽 (2010). 茶树-假眼小绿叶蝉-缨小蜂间化学和色彩通讯机理研究. 硕士论文. 扬州: 扬州大学. pp. 7-12. |
[10] | 林郑和, 钟秋生, 陈常颂, 陈志辉, 游小妹 (2015). 不同香型茶树鲜叶挥发性组分与β-葡萄糖苷酶的相关性分析. 植物学报 50, 713-720. |
[11] | 刘丰静, 冉伟, 李喜旺, 汪素琴, 孙晓玲 (2020). 小贯小绿叶蝉在5个茶树品种(系)上的蜜露排泄量与茶树叶片结构比较. 茶叶科学 40, 625-631. |
[12] | 孟召娜, 边磊, 罗宗秀, 李兆群, 辛肇军, 蔡晓明 (2018). 全国主产茶区茶树小绿叶蝉种类鉴定及分析. 应用昆虫学报 55, 514-526. |
[13] | 穆丹 (2011). 茶树挥发性信息素调控假眼小绿叶蝉及叶蝉三棒缨小蜂行为的功效. 博士论文. 北京: 中国农业科学院. pp. 12-62. |
[14] | 聂晓培 (2017). 班氏跳小蜂寄主定位的嗅觉机制. 硕士论文. 武汉: 华中农业大学. pp. 41-47. |
[15] | 潘铖, 林金丽, 韩宝瑜 (2016). 茶梢信息物引诱叶蝉三棒缨小蜂效应的检测. 生态学报 36, 3785-3795. |
[16] | 吴国火, 崔林, 王梦馨, 李红亮, 韩宝瑜 (2020). 茶树花香气及茶叶气味对中华蜜蜂的引诱效应. 生态学报 40, 4024-4031. |
[17] | 张云宣 (2018). 挥发性物质介导的稻纵卷叶螟姬小蜂搜寻与定位寄主行为机制初步研究. 硕士论文. 南宁: 广西大学. pp. 38-42. |
[18] | 赵冬香, 陈宗懋, 程家安 (2000). 茶小绿叶蝉优势种的归属. 茶叶科学 20, 101-104. |
[19] |
左照江, 张汝民, 高岩 (2009). 植物间挥发物信号的研究进展. 植物学报 44, 245-252.
DOI |
[20] |
Aartsma Y, Leroy B, Van Der Werf W, Dicke M, Poelman EH, Bianchi FJJA (2019). Intraspecific variation in herbivore-induced plant volatiles influences the spatial range of plant-parasitoid interactions. Oikos 128, 77-86.
DOI URL |
[21] | Boachon B, Junker RR, Miesch L, Bassard JE, Hofer R, Caillieaudeaux R, Seidel DE, Lesot A, Heinrich C, Ginglinger JF, Allouche L, Vincent B, Wahyuni DSC, Paetz C, Beran F, Miesch M, Schneider B, Leiss K, Werck-Reichhart D (2015). CYP76C1 (Cytochrome P450)-mediated linalool metabolism and the formation of volatile and soluble linalool oxides in Arabidopsis flowers. Plant Cell 27, 2972-2990. |
[22] |
Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl F (2019). The role of volatiles in plant communication. Plant J 100, 892-907.
DOI |
[23] |
Cao H (2013). Polysaccharides from Chinese tea: recent advance on bioactivity and function. Int J Biol Macromol 62, 76-79.
DOI URL |
[24] |
Chen D, Chen GJ, Sun Y, Zeng XX, Ye H (2020). Physiological genetics, chemical composition, health benefits and toxicology of tea ( Camellia sinensis L.) flower: a review. Food Res Int 137, 109584.
DOI PMID |
[25] |
Chen GJ, Yuan QX, Saeeduddin M, Ou SY, Zeng XX, Ye H (2016). Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities. Carbohydr Polym 153, 663-678.
DOI URL |
[26] |
D'Alessandro M, Brunner V, Von Mérey G, Turlings TCJ (2009). Strong attraction of the parasitoid Cotesia marginiventris towards minor volatile compounds of maize. J Chem Ecol 35, 999-1008.
DOI PMID |
[27] |
Desurmont GA, Von Arx M, Turlings TCJ, Schiestl FP (2020). Floral odors can interfere with the foraging behavior of parasitoids searching for hosts. Front Ecol Evol 8, 148.
DOI URL |
[28] |
Fu JY, Han BY, Xiao Q (2014). Mitochondrial COI and 16sRNA evidence for a single species hypothesis of E. vitis, J. formosana and E. onukii in East Asia. PLoS One 9, e115259.
DOI URL |
[29] |
Gorden NLS, Adler LS (2018). Consequences of multiple flower-insect interactions for subsequent plant-insect interactions and plant reproduction. Am J Bot 105, 1835-1846.
DOI URL |
[30] |
Han BY, Chen ZM (2002a). Composition of the volatiles from intact and mechanically pierced tea aphid-tea shoot complexes and their attraction to natural enemies of the tea aphid. J Agric Food Chem 50, 2571-2575.
DOI URL |
[31] |
Han BY, Chen ZM (2002b). Composition of the volatiles from intact and tea aphid-damaged tea shoots and their allurement to several natural enemies of the tea aphid. J Appl Entomol 126, 497-500.
DOI URL |
[32] |
Huang MS, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012). The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193, 997-1008.
DOI URL |
[33] |
Ishiwari H, Suzuki T, Maeda T (2007). Essential compounds in herbivore-induced plant volatiles that attract the predatory mite Neoseiulus womersleyi. J Chem Ecol 33, 1670-1681.
PMID |
[34] | Joshi R, Poonam, Saini R, Guleria S, Babu GDK, Kumari M, Gulati A (2011). Characterization of volatile components of tea flowers ( Camellia sinensis) growing in Kangra by GC/MS. Nat Prod Commun 6, 1155-1158. |
[35] |
Lee LC, Liong CY, Jemain AA (2018). Partial least squares- discriminant analysis (PLS-DA) for classification of high- dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. Analyst 143, 3526-3539.
DOI URL |
[36] |
Liu FL, Zhang XW, Chai JP, Yang DR (2006). Pollen phenolics and regulation of pollen foraging in honeybee colony. Behav Ecol Sociobiol 59, 582-588.
DOI URL |
[37] |
Maffei ME, Gertsch J, Appendino G (2011). Plant volatiles: production, function and pharmacology. Nat Prod Rep 28, 1359-1380.
DOI URL |
[38] |
McCormick AC, Unsicker SB, Gershenzon J (2012). The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17, 303-310.
DOI PMID |
[39] |
Mu D, Cui L, Ge J, Wang MX, Liu LF, Yu XP, Zhang QH, Han BY (2012). Behavioral responses for evaluating the attractiveness of specific tea shoot volatiles to the tea green leafhopper, Empoaca vitis. Insect Sci 19, 229-238.
DOI URL |
[40] |
Poveda K, Steffan-Dewenter I, Scheu S, Tscharntke T (2003). Effects of below- and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia 135, 601-605.
PMID |
[41] |
Qin DZ, Zhang L, Xiao Q, Dietrich C, Matsumura M (2015). Clarification of the identity of the tea green leafhopper based on morphological comparison between Chinese and Japanese Specimens. PLoS One, 10, e0139202.
DOI URL |
[42] |
Rodriguez-Saona CR, Byers JA, Schiffhauer D (2012). Effect of trap color and height on captures of blunt-nosed and sharp-nosed leafhoppers (Hemiptera: Cicadellidae) and non-target arthropods in cranberry bogs. Crop Prot 40, 132-144.
DOI URL |
[43] |
Rohrig E, Sivinski J, Teal P, Stuhl C, Aluja M (2008). A floral-derived compound attractive to the tephritid fruit fly parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae). J Chem Ecol 34, 549-557.
DOI PMID |
[44] | Sanou A, Traoré F, Ba MN, Dabiré-Binso CL, Pittendrigh BR, Sanon A (2019). Effects of volatiles from Clavigralla tomentosicollis Stål. (Hemiptera: Coreidae) adults on the host location behavior of the egg parasitoid Gryon fulviventre (Crawford) (Hymenoptera: Scelionidae). Int J Insect Sci 11, 1-7. |
[45] |
Schiestl FP (2015). Ecology and evolution of floral volatile-mediated information transfer in plants. New Phytol 206, 571-577.
DOI PMID |
[46] |
Schnee C, Kollner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006). The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103, 1129-1134.
DOI URL |
[47] |
Sharma R, Rana A, Kumar S (2020). Phytochemical investigation and bioactivity studies of flowers obtained from different cultivars of Camellia sinensis plant. Nat Prod Res doi: 10.1080/14786419.2020.1844696.
DOI |
[48] |
Simpson M, Gurr GM, Simmons AT, Wratten SD, James DG, Leeson G, Nicol HI (2011). Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agr Forest Entomol 13, 45-57.
DOI URL |
[49] |
Takemoto H, Takabayashi JJ (2015). Parasitic wasps Aphidius ervi are more attracted to a blend of host-induced plant volatiles than to the independent compounds. J Chem Ecol 41, 801-807.
DOI URL |
[50] |
Tan XL, Hu NN, Zhang F, Ramirez-Romero R, Desneux N, Wang S, Ge F (2016). Mixed release of two parasitoids and a polyphagous ladybird as a potential strategy to control the tobacco whitefly Bemisia tabaci. Sci Rep 6, 28245.
DOI URL |
[51] |
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB (2019). Health functions and related molecular mechanisms of tea components: an update review. Int J Mol Sci 20, 6196.
DOI URL |
[52] |
Turlings TCJ, Erb M (2018). Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63, 433-452.
DOI PMID |
[53] | Wang P, Lou YG (2013). Screening and field evaluation of synthetic plant volatiles as attractants for Anagrus nilaparvatae Pang et Wang, an egg parasitoid of rice planthoppers. Chin J Appl Entomol 50, 431-440. |
[54] |
Wang ZZ, Liu YQ, Shi M, Huang JH, Chen XX (2019). Parasitoid wasps as effective biological control agents. J Integ Agric 18, 705-715.
DOI URL |
[55] |
Wei JN, Kang L (2011). Roles of (Z)-3-hexenol in plant- insect interactions. Plant Signal Behav 6, 369-371.
DOI URL |
[56] |
Xiu CL, Zhang W, Xu B, Wyckhuys KAG, Cai XM, Su HS, Lu YH (2019). Volatiles from aphid-infested plants attract adults of the multicolored Asian lady beetle Harmonia axyridis. Biol Control 129, 1-11.
DOI URL |
[57] |
Ye J, Zhang LL, Zhang X, Wu XJ, Fang RX (2021). Plant defense networks against insect-borne pathogens. Trends Plant Sci 26, 272-287.
DOI URL |
[58] |
Zhao MY, Wang L, Wang JM, Jin JY, Zhang N, Lei L, Gao T, Jing TT, Zhang SR, Wu Y, Wu B, Hu YQ, Wan XC, Schwab W, Song CK (2020). Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. J Integr Plant Biol 62, 1461-1468.
DOI URL |
[1] | 孙廷哲, 岂泽华, 梁可欣, 李沁, 饶玉春, 穆丹. 蚜害茶树挥发物组分变化的聚类分析[J]. 植物学报, 2021, 56(4): 422-432. |
[2] | 刘建福, 陈育才, 王文建, 王河川, 蔡金福, 王明元, 李丹丹, 张斌, 黄昆. 航天搭载对武夷名丛相关生理及生长特性的影响[J]. 植物学报, 2020, 55(5): 564-572. |
[3] | 杨小青,黄晓琴,韩晓阳,刘腾飞,岳晓伟,伊冉. 外源物质对茶树耐寒及蔗糖代谢关键基因表达的影响[J]. 植物学报, 2020, 55(1): 21-30. |
[4] | 张晓玲,李亦超,王芸芸,蔡宏宇,曾辉,王志恒. 未来气候变化对不同国家茶适宜分布区的影响[J]. 生物多样性, 2019, 27(6): 595-606. |
[5] | 刘小妹,孙丽莉,傅向东,廖红. 茶树嫩枝扦插的高效方法[J]. 植物学报, 2019, 54(4): 531-538. |
[6] | 李春杰, 姚祥, 南志标. 醉马草内生真菌共生体研究进展[J]. 植物生态学报, 2018, 42(8): 793-805. |
[7] | 孙燕, 周忠实, 王瑞, HeinzMüller-Schärer. 气候变化预计会减少东亚地区豚草的生物防治效果**[J]. 生物多样性, 2017, 25(12): 1285-1294. |
[8] | 林郑和, 钟秋生, 陈常颂, 陈志辉, 游小妹. 不同香型茶树鲜叶挥发性组分与β-葡萄糖苷酶的相关性分析[J]. 植物学报, 2015, 50(6): 713-720. |
[9] | 李秀璋, 姚祥, 李春杰, 南志标. 禾草内生真菌作为生防因子的潜力分析[J]. 植物生态学报, 2015, 39(6): 621-634. |
[10] | 黄伟, 王毅, 丁建清. 入侵植物乌桕防御策略的适应性进化研究[J]. 植物生态学报, 2013, 37(9): 889-900. |
[11] | 强胜, 陈国奇, 李保平, 孟玲. 中国农业生态系统外来种入侵及其管理现状[J]. 生物多样性, 2010, 18(6): 647-659. |
[12] | 余香琴, 冯玉龙, 李巧明. 外来入侵植物飞机草的研究进展与展望[J]. 植物生态学报, 2010, 34(5): 591-600. |
[13] | 孙美莲, 王云生, 杨冬青, 韦朝领, 高丽萍, 夏涛, 单育, 骆洋. 茶树实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2010, 45(05): 579-587. |
[14] | 王万能 全学军 肖崇刚. 烟草内生细菌防治烟草黑胫病及促生作用研究[J]. 植物学报, 2005, 22(04): 426-431. |
[15] | 纪维红, Mick N. Clout. 新西兰的负鼠——一场尚未完结的与外来入侵有袋类的较量[J]. 生物多样性, 2002, 10(1): 98-105. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||