植物学报 ›› 2020, Vol. 55 ›› Issue (4): 403-406.DOI: 10.11983/CBB20096 cstr: 32102.14.CBB20096
收稿日期:
2020-05-26
接受日期:
2020-06-07
出版日期:
2020-07-01
发布日期:
2020-06-17
通讯作者:
黄三文
基金资助:
Guangtao Zhu1,Sanwen Huang2,*()
Received:
2020-05-26
Accepted:
2020-06-07
Online:
2020-07-01
Published:
2020-06-17
Contact:
Sanwen Huang
摘要: 大豆(Glycine max)是重要的油料和蛋白作物, 其丰富的遗传变异为生物学性状挖掘和育种改良提供了重要的资源基础。然而, 单个基因组信息无法全面揭示种质资源的遗传变异, 泛基因组研究为解决这一不足提供了新方案。近日, 中国科学院遗传与发育生物学研究所田志喜和梁承志研究团队从2 898份大豆种质中选取26份代表性材料, 并整合已有的3个基因组, 构建了包含野生和栽培大豆的泛基因组和图基因组(graph-based genome), 鉴定了整个群体的绝大多数结构变异数据集, 确定了大豆种质的核心、非必需和个体特异的基因集。利用这些数据系统地揭示了生育期位点E3的等位基因变异和基因融合事件、种皮颜色基因I的单体型和演化关系以及结构变异对铁离子转运基因表达和地区适应性选择的影响。该研究为作物基因组学研究提供了一个新的模式, 同时将加速推动大豆遗传变异的鉴定、性状解析和种质创新。
祝光涛,黄三文. 360度群体遗传变异扫描——大豆泛基因组研究. 植物学报, 2020, 55(4): 403-406.
Guangtao Zhu,Sanwen Huang. A 360-degree Scanning of Population Genetic Variations—a Pan-genome Study of Soybean. Chinese Bulletin of Botany, 2020, 55(4): 403-406.
图1 大豆种子形态的群体变异 左边为野生大豆(拼图为汉字“菽”的象形字), 中间为地方种质(拼图为汉字“菽”), 右边为现代栽培种(拼图为汉字“豆”)。
Figure 1 The seed phenotype variations of soybean germplasm The left part is wild type (hieroglyphic Chinese writing of “shu”), the middle is landrance type (traditional Chinese character of “shu”), and the right is modern type (traditional Chinese character of “dou”)
[1] | Carter TE Jr, Nelson R, Sneller CH, Cui Z (2004). Soybeans: Improvement, Production and Uses, 3rd edn. Madison: American Society of Agronomy. pp. 97. |
[2] | Dai W, Huang Y, Wu L, Yu J (2009). Relationships between soil organic matter content (SOM) and pH in topsoil of zonal soils in China. Acta Pedol Sin 46, 851-860. |
[3] |
Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, Burzynski-Chang EA, Fish TL, Stromberg KA, Sacks GL, Thannhauser TW, Foolad MR, Diez MJ, Blanca J, Canizares J, Xu Y, van der Knaap E, Huang S, Klee HJ, Giovannoni JJ, Fei Z (2019). The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 51, 1044-1051.
URL PMID |
[4] |
Golicz AA, Batley J, Edwards D (2016). Towards plant pangenomics. Plant Biotechnol J 14, 1099-1105.
URL PMID |
[5] |
Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012). A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497-501.
DOI URL PMID |
[6] |
Jiao WB, Accinelli GG, Hartwig B, Kiefer C, Baker D, Severing E, Willing EM, Piednoel M, Woetzel S, Madrid-Herrero E, Huettel B, Hümann U, Reinhard R, Koch MA, Swan D, Clavijo B, Coupland G, Schnee-berger K (2017). Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome Res 27, 778-786.
DOI URL PMID |
[7] |
Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang SS, Zuo Q, Shi XH, Li YF, Zhang WK, Hu Y, Kong G, Hong HL, Tan B, Song J, Liu ZX, Wang Y, Ruan H, Yeung CKL, Liu J, Wang H, Zhang LJ, Guan RX, Wang KJ, Li WB, Chen SY, Chang RZ, Jiang Z, Jackson SA, Li R, Qiu LJ (2014). De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32, 1045-1052.
DOI URL PMID |
[8] |
Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou GA, Zhang H, Liu Z, Shi M, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z (2020). Pan-genome of wild and cultivated soybeans. Cell 182, 162-176.
DOI URL PMID |
[9] |
Lye ZN, Purugganan MD (2019). Copy number variation in domestication. Trends Plant Sci 24, 352-365.
DOI URL PMID |
[10] |
Morrissey J, Guerinot ML (2009). Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109, 4553-4567.
DOI URL PMID |
[11] |
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010). Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183.
URL PMID |
[12] |
Tuteja JH, Clough SJ, Chan WC, Vodkin LO (2004). Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16, 819-835.
DOI URL PMID |
[13] |
Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009). Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182, 1251-1262.
DOI URL PMID |
[14] |
Xie M, Chung CY, Li MW, Wong FL, Wang X, Liu A, Wang Z, Leung AK, Wong TH, Tong SW, Xiao Z, Fan K, Ng MS, Qi X, Yang L, Deng T, He L, Chen L, Fu A, Ding Q, He J, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen HT, Cannon SB, Foyer CH, Chan TF, Lam HM (2019). A reference-grade wild soybean genome. Nat Commun 10, 1216.
URL PMID |
[15] |
Zhao Q, Feng Q, Lu H, Li Y, Wang A, Tian Q, Zhan Q, Lu Y, Zhang L, Huang T, Wang Y, Fan D, Zhao Y, Wang Z, Zhou C, Chen J, Zhu C, Li W, Weng Q, Xu Q, Wang ZX, Wei X, Han B, Huang X (2018). Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50, 278-284.
URL PMID |
[1] | 郑立媛, 徐茜竹, 尹嘉淇, 孙小雯, 王艳. 沈阳城郊近河农田退耕地野大豆群落生态位和种间联结研究[J]. 植物生态学报, 2025, 49(濒危植物的保护与恢复): 1-. |
[2] | 曹婕, 卢秋连, 翟健平, 刘宝辉, 方超, 李世晨, 苏彤. 大豆TPS基因家族在盐胁迫下的表达变化及单倍型选择规律分析(长英文摘要)[J]. 植物学报, 2025, 60(2): 172-185. |
[3] | 马佳正, 陈雨婷, 马松梅, 张丹, 贺凌云. 基于多源数据的新疆沙漠植物白梭梭遗传格局与扩散路径模拟[J]. 植物生态学报, 2024, 48(10): 1326-1335. |
[4] | 陈雨婷, 马松梅, 张丹, 张林, 王春成. 新疆同域分布梭梭和白梭梭多样性格局及其形成机制[J]. 植物生态学报, 2024, 48(1): 56-67. |
[5] | 陈佳欣, 梅浩, 黄彩翔, 梁宗原, 全依桐, 李东鹏, 布威麦尔耶姆·赛麦提, 李欣欣, 廖红. 利用转基因毛状根高效培育大豆嵌合植株的方法[J]. 植物学报, 2024, 59(1): 89-98. |
[6] | 武棒棒, 郝宇琼, 杨淑斌, 黄雨茜, 关攀锋, 郑兴卫, 赵佳佳, 乔玲, 李晓华, 刘维仲, 郑军. 山西小麦籽粒叶黄素含量变异及遗传特性分析[J]. 植物学报, 2023, 58(4): 535-547. |
[7] | 王韫慧, 王一帆, 蔺佳雨, 李金红, 姚士恩, 冯湘池, 曹振林, 王俊, 李美娜. 植物驱动蛋白: 从微管阵列到生理活动调控[J]. 植物学报, 2022, 57(3): 358-374. |
[8] | 杜梦柯, 连文婷, 张晓, 李欣欣. 氮处理对大豆根瘤固氮能力及GmLbs基因表达的影响[J]. 植物学报, 2021, 56(4): 391-403. |
[9] | 夏正俊, 李玉卓, 朱金龙, 吴红艳, 徐坤, 翟红. 快速、无损大豆种子连续取样技术及其DNA制备[J]. 植物学报, 2021, 56(1): 56-61. |
[10] | 王研, 贾博为, 孙明哲, 孙晓丽. 野生大豆耐逆分子调控机制研究进展[J]. 植物学报, 2021, 56(1): 104-115. |
[11] | 王春成, 马松梅, 张丹, 王绍明. 柴达木野生黑果枸杞的空间遗传结构[J]. 植物生态学报, 2020, 44(6): 661-668. |
[12] | 纪若璇, 于笑, 常远, 沈超, 白雪卡, 夏新莉, 尹伟伦, 刘超. 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义[J]. 植物生态学报, 2020, 44(3): 277-286. |
[13] | 冯锋,战勇,田志喜. 新疆地区发展大豆生产的可行性和初步建议[J]. 植物学报, 2020, 55(2): 199-204. |
[14] | 翁茁先, 黄佳琼, 张仕豪, 余锴纯, 钟福生, 黄勋和, 张彬. 利用线粒体COI基因揭示中国乌骨鸡遗传多样性和群体遗传结构[J]. 生物多样性, 2019, 27(6): 667-676. |
[15] | 唐康,杨若林. 大豆蛋白编码基因起源与进化[J]. 植物学报, 2019, 54(3): 316-327. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||