植物学报 ›› 2021, Vol. 56 ›› Issue (1): 56-61.DOI: 10.11983/CBB20095 cstr: 32102.14.CBB20095
夏正俊1,*(), 李玉卓1,2, 朱金龙1, 吴红艳1, 徐坤1, 翟红1
收稿日期:
2020-05-26
接受日期:
2020-10-05
出版日期:
2021-01-01
发布日期:
2021-01-15
通讯作者:
夏正俊
作者简介:
E-mail: xiazhj@iga.ac.cn基金资助:
Zhengjun Xia1,*(), Yuzhuo Li1,2, Jinlong Zhu1, Hongyan Wu1, Kun Xu1, Hong Zhai1
Received:
2020-05-26
Accepted:
2020-10-05
Online:
2021-01-01
Published:
2021-01-15
Contact:
Zhengjun Xia
摘要: 建立简便、快速和无损种子连续取样技术流程及基因型鉴定技术体系, 可节约种植成本及缩短鉴定周期, 提高基因功能研究和育种效率。该研究利用微型电钻和空气泵等简单装置设计了一种连续且无损钻取大豆(Glycine max)种子组织的方法, 并优化了利用384深孔微孔板高通量提取DNA及基因型鉴定技术体系。该方法也可用于水稻(Oryza sativa)和玉米(Zea mays)等多种主要作物的种子取样及基因型鉴定。
夏正俊, 李玉卓, 朱金龙, 吴红艳, 徐坤, 翟红. 快速、无损大豆种子连续取样技术及其DNA制备. 植物学报, 2021, 56(1): 56-61.
Zhengjun Xia, Yuzhuo Li, Jinlong Zhu, Hongyan Wu, Kun Xu, Hong Zhai. A Rapid, Non-destructive and Continuous Sampling Technique and DNA Extraction for Soybean Seed. Chinese Bulletin of Botany, 2021, 56(1): 56-61.
图1 种子钻孔和样品采集过程 (A) 种子组织的钻取; (B) 移液枪头收集种子组织; (C) 钻取种子组织并转移至384深孔板中; (D) 一列取样完成后贴胶带保护; (E) 钻头的清洁; (F) 移液枪头和手套的清洁; (G) 钻孔后的大豆种子; (H) 钻孔大豆种子播种后14天的幼苗。中间部分为整体流程简图, 种子取样经钻取、转移和清洁3个步骤, 再进行下一个种子的钻取。
Figure 1 Procedure for seed drilling and sample collection (A) Drilling of seed tissue; (B) Dilled tissue was collected by a pipette tip; (C) Transferring into a 384 deep-well plate; (D) When all wells in a row of the 384 deep-well plate were filled, the row will be sealed with a sticky tape; (E) Cleaning of the driller; (F) Cleaning of the tip and gloves; (G) Appearance of drilled seed; (H) Seedling of drilled seed (14 days after being sown). In the middle panel, the whole procedure is shown, in which seed sampling is performed by drilling, transferring and cleaning before proceeding to the next one.
图2 大豆遗传群体经种子钻取及DNA制备后的基因型鉴定 利用Satt557和S8两对引物进行单管PCR能准确鉴定两分子标记间的重组个体(箭头)。M: 分子质量标准品ΦX174 HaeIII; 1-19: Harosoy-E1与Harosoy (e1)杂交的F2群体(在每个泳道底部标注有每个个体2个分子标记的基因型)。
Figure 2 Genotyping of a soybean genetic population through seed-drilling and thereafter DNA extraction Accurate identification of recombinant occuring between two markers, Satt557 and S8, using one tube PCR (arrow). M: Molecular weight marker ΦX174 HaeIII; 1-19: F2 population that were derived from Harosoy-E1 × Harosoy (e1) (the genotypes of each individual were indicated at the bottom of each lane).
图3 种子钻孔法鉴定结果的验证 钻孔的大豆种子出苗后, 提取其叶片DNA进行相关引物的基因型鉴定, 以验证种子基因型鉴定结果的准确性。上部和下部凝胶图分别为Satt557和S8的验证结果(底部标注了2个分子标记的基因型)。
Figure 3 Verification of genotyping results obtained through seed-drilling DNA were extracted from leaves of the plants that were developed from the drilled seeds, thereafter genotyping of Satt557 and S8 were performed to verify the accuracy of genotyping data of seed. The upper and the bottom gels are shown the genotyping result of Satt557 and S8, respectively (the genotypes of each individual were indicated at the bottom of each lane).
图4 水稻、大豆和玉米种子大小及对应钻头型号 (A) 水稻种子(平均钻孔深度为(1.52±0.12) mm, 直径0.9 mm的钻头获取的平均组织重量为(1.54±0.12) mg, 直径1.1 mm的钻头获取的平均组织重量为(2.30±0.18) mg); (B) 小粒大豆种子(平均钻孔深度为(3.88±0.37) mm, 直径1.1 mm的钻头获取的平均组织重量为(5.85±0.99) mg, 直径1.2 mm的钻头获取的平均组织重量为(6.96±0.66) mg); (C) 大粒大豆种子(平均钻孔深度为(4.63±0.43) mm, 直径1.2 mm的钻头获取的平均组织重量为(8.31±0.79) mg, 直径1.3 mm的钻头获取的平均组织重量为(9.75±0.92) mg)。(D) 玉米种子(平均钻孔深度为(3.78±0.46) mm, 直径1.2 mm的钻头获取的平均组织重量为(6.79±0.83) mg, 直径1.3 mm的钻头获取的平均组织重量为(7.97±0.98) mg)。
Figure 4 The seed dimensions of rice, soybean and maize and the selection of their appropriate drillers (A) Rice seed (average drilling depth is (1.52±0.12) mm; average acquired tissue weight is (1.54±0.12) mg for the 0.9 mm diameter driller; average acquired tissue weight is (2.30±0.18) mg for the 1.1 mm diameter driller). (B) Soybean seed (small size) (average drilling depth is (3.88±0.37) mm; average acquired tissue weight is (5.85±0.99) mg for the 1.1 mm diameter driller; average acquired tissue weight is (6.96±0.66) mg for the 1.2 mm diameter driller). (C) Soybean seed (large size) (average drilling depth is (4.63±0.43) mm; average acquired tissue weight is (8.31±0.79) mg for the 1.2 mm diameter driller; average acquired tissue weight is (9.75±0.92) mg for the 1.3 mm diameter driller). (D) Maize seed (average drilling depth is (3.78±0.46) mm; average acquired tissue weight is (6.79±0.83) mg for the 1.2 mm diameter driller; average acquired tissue weight is (7.97±0.98) mg for the 1.3 mm diameter driller.
[1] | 程文, 夏正俊, 冯献忠, 杨素欣 (2016). 一种快速、无损大豆种子DNA提取方法的建立和应用. 植物学报 51, 68-73. |
[2] | 薛勇彪, 种康, 韩斌, 桂建芳, 王台, 傅向东, 何祖华, 储成才, 田志喜, 程祝宽, 林少扬 (2015). 开启中国设计育种新篇章——“分子模块设计育种创新体系”战略性先导科技专项进展. 中国科学院院刊 30, 393-402. |
[3] | Kamiya M, Kiguchi T (2003). Rapid DNA extraction method from soybean seeds. Breed Sci 53, 277-279. |
[4] |
King Z, Serrano J, Boerma HR, Li ZL (2014). Non-toxic and efficient DNA extractions for soybean leaf and seed chips for high-throughput and large-scale genotyping. Biotechnol Lett 36, 1875-1879.
URL PMID |
[5] | McCarthy PL, Hansen JL, Zemetra RS, Berger PH (2002). Rapid identification of transformed wheat using a half- seed PCR assay. Biotechniques 32, 560-564. |
[6] | von Post R, von Post L, Dayteg C, Nilsson M, Forster BP, Tuvesson S (2003). A high-throughput DNA extraction method for barley seed. Euphytica 130, 255-260. |
[7] |
Xia ZJ, Tsubokura Y, Hoshi M, Hanawa M, Yano C, Okamura K, Ahmed TA, Anai T, Watanabe S, Hayashi M, Kawai T, Hossain KG, Masaki H, Asai K, Yamanaka N, Kubo N, Kadowaki K, Nagamura Y, Yano M, Sasaki T, Harada K (2007). An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population. DNA Res 14, 257-269.
DOI URL PMID |
[8] |
Xia ZJ, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü SX, Wu HY, Tabata S, Harada K (2012). Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109, E2155-E2164.
DOI URL PMID |
[1] | 周鑫宇, 刘会良, 高贝, 卢妤婷, 陶玲庆, 文晓虎, 张岚, 张元明. 新疆特有濒危植物雪白睡莲繁殖生物学研究[J]. , 2025, 49(濒危植物的保护与恢复): 0-. |
[2] | 田建红, 刘燕, 尹梦琪, 王静, 陈婷, 汪燕, 姜孝成. 水稻OsWAK16通过调节抗氧化酶活性调控种子抗老化能力(长英文摘要)[J]. 植物学报, 2025, 60(1): 17-32. |
[3] | 曲文杰, 王磊, 康文岩, 杨新国, 屈建军, 张雪. 腾格里沙漠东南缘不同年限固沙植被区种子雨和土壤种子库动态与植被更新潜力[J]. 生物多样性, 2025, 33(1): 24254-. |
[4] | 张辉, 赵赟鹏, 刘晓琛, 郭增鹏, 胡国瑞, 冯彦皓, 马妙君. 高寒草甸退化过程中土壤种子库的变化及其在植物群落更新中的潜在作用[J]. 植物生态学报, 2025, 49(1): 74-82. |
[5] | 孙龙, 李文博, 娄虎, 于澄, 韩宇, 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(6): 770-779. |
[6] | 李红菊, 杨维才. 微肽大用: 种子脱水调控新机制[J]. 植物学报, 2024, 59(6): 869-872. |
[7] | 罗燕, 刘奇源, 吕元兵, 吴越, 田耀宇, 安田, 李振华. 拟南芥光敏色素突变体种子萌发的光温敏感性[J]. 植物学报, 2024, 59(5): 752-762. |
[8] | 袁涵, 钟爱文, 刘送平, 彭焱松, 徐磊. 水毛花种子萌发特性的差异及休眠解除方法[J]. 植物生态学报, 2024, 48(5): 638-650. |
[9] | 朱晓博, 董张, 祝梦瑾, 胡晋, 林程, 陈敏, 关亚静. 重要的种子储存物质长寿命mRNA[J]. 植物学报, 2024, 59(3): 355-372. |
[10] | 丁扬, 冯英群, 张金羽, 王博. 动物对濒危特有种大别山五针松种子的捕食和散布[J]. 生物多样性, 2024, 32(3): 23401-. |
[11] | 马斌, 佘维维, 秦欢, 宣瑞智, 宋春阳, 袁新月, 苗春, 刘靓, 冯薇, 秦树高, 张宇清. 氮水添加对黑沙蒿种子功能性状的影响[J]. 植物生态学报, 2024, 48(12): 1637-1649. |
[12] | 杜忠毓, 王佳, 陈光才. 土壤种子库特征对全球变化和人类活动的响应: 研究进展与展望[J]. 植物生态学报, 2024, 48(12): 1561-1575. |
[13] | 王明慧, 陈昭铨, 李帅锋, 黄小波, 郎学东, 胡子涵, 尚瑞广, 刘万德. 云南普洱季风常绿阔叶林不同种子扩散方式的优势种空间点格局分析[J]. 生物多样性, 2023, 31(9): 23147-. |
[14] | 蔡淑钰, 刘建新, 王国夫, 吴丽元, 宋江平. 褪黑素促进镉胁迫下番茄种子萌发的调控机理[J]. 植物学报, 2023, 58(5): 720-732. |
[15] | 程继铭, 何慧敏, 牛红玉, 张洪茂. 鼠类种内个性差异对种子传播影响的研究进展[J]. 生物多样性, 2023, 31(4): 22446-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||