植物学报 ›› 2020, Vol. 55 ›› Issue (6): 677-692.DOI: 10.11983/CBB20048
宋凝曦1,2, 谢寅峰2, 李霞1,2,3,*
收稿日期:
2020-03-21
接受日期:
2020-08-26
出版日期:
2020-11-01
发布日期:
2020-11-11
通讯作者:
李霞
作者简介:
*E-mail: jspplx@jaas.ac.cn基金资助:
Ningxi Song1,2, Yingfeng Xie2, Xia Li1,2,3,*
Received:
2020-03-21
Accepted:
2020-08-26
Online:
2020-11-01
Published:
2020-11-11
Contact:
Xia Li
摘要:
为探究干旱胁迫下表观遗传机制对高表达玉米(Zea mays) C4型PEPC转基因水稻(Oryza sativa)种子萌发的影响, 以转C4型PEPC水稻(PC)和野生型水稻Kitaake (WT)为试材, 采用10% (m/v)聚乙二醇6000 (PEG6000)模拟干旱条件, 通过单独和联合施用PEG6000、DNA甲基化抑制剂5-氮杂胞苷(5azaC)和可变剪接抑制剂大环内酯类(PB)进行种子发芽实验, 测定种子活力、萌发过程中可溶性糖和可溶性蛋白含量、α-淀粉酶活性以及PEPC、糖信号相关基因和部分剪接因子基因的表达。结果表明, 0.25 µmol·L-1PB处理对2种供试水稻在干旱条件下种子萌发均表现出显著抑制作用, 使干旱条件下种子萌发过程中可溶性总糖、蔗糖、葡萄糖和果糖含量以及可溶性蛋白含量均有所下降, PB也抑制糖信号-蔗糖非发酵1 (SNF1)相关蛋白激酶(SnRKs)家族和剪接因子丝氨酸/精氨酸富集蛋白家族(SR proteins)相关基因的表达以及α-淀粉酶的活性, 但对PC的抑制作用小于WT。5 µmol·L-15azaC处理对干旱条件下种子萌发的效果与可变剪接抑制剂相反。5 µmol·L -1 5azaC联合PEG6000干旱处理部分减缓了干旱对水稻种子发芽率的抑制作用, 使供试材料发芽率升高, 表明DNA甲基化和可变剪接机制参与了水稻芽期干旱耐性, 其中对PC的作用更大。
宋凝曦, 谢寅峰, 李霞. 干旱胁迫下表观遗传机制对转C4型PEPC基因水稻种子萌发的影响. 植物学报, 2020, 55(6): 677-692.
Ningxi Song, Yingfeng Xie, Xia Li. Effects of Epigenetic Mechanisms on C4 Phosphoenolpyruvate Carboxylase Transgenic Rice (Oryza sativa) Seed Germination Under Drought Stress. Chinese Bulletin of Botany, 2020, 55(6): 677-692.
Gene | Forward primer (5'-3') | Reverse primer (5'-3') |
---|---|---|
Actin | CCCTCAAACATCGGTATGGA | TTGATCTTCATGCTGCTTGG |
OsK1a | AACCAGAGGTAACAGGCAGG | AACCAGAGGTAACAGGCAGG |
OsK24 | CGTGTTGGCTTCAGTGAAT | CCTTCTCTATCTAAGGGCCG |
OsK35 | TTGTGTTGGCTTCAGTGAAA | CCTTCGCTGTCTAAGGACTG |
C4-PEPC | CCCACTATCCTTCGCAAGAC | CTAGCCAGTGTTCTGCATGCCGG |
Osppc2a | CTGGTTGAGATGGTTTTCGC | GGTGTGAATTCAGGCACTTC |
SAPK8 | ATAGATGATAATGTCCAGCG | GTTCCTACAGTGGATTTTGG |
SAPK9 | CACAGCAACGCCGTCTCC | CACACTTCCACCGCTACCAA |
SAPK10 | TGCTGATGTGTGGTCGTGTG | TGCTGGTATGGTCGCCTCT |
SR40 | CAATCTGGGGACTGCTTTC | TCCTGCTTGGGCTTTTACT |
SR33 | ATATTGCCTGCTACCCGAAAG | CAGAGCAGCACCCAGTTTATTAC |
OsAmy1A | TTTCGGTCCTCATCGTCCTCC | TCCACGACTCCCAGTTGAATC |
OsAmy1C | TGGTATCGATCAGAAACCGGC | GTCCGACCTTCGTGATGACC |
OsAmy3C | AAGCATTCCACCACAATGAGC | AGGAAGTTGTACCACCCACC |
OsAmy3E | TCACCCTGTGTTGTGTCGTT | AAAGTTGTACCACCCGCCTT |
表1 引物序列
Table 1 Primers used in this study
Gene | Forward primer (5'-3') | Reverse primer (5'-3') |
---|---|---|
Actin | CCCTCAAACATCGGTATGGA | TTGATCTTCATGCTGCTTGG |
OsK1a | AACCAGAGGTAACAGGCAGG | AACCAGAGGTAACAGGCAGG |
OsK24 | CGTGTTGGCTTCAGTGAAT | CCTTCTCTATCTAAGGGCCG |
OsK35 | TTGTGTTGGCTTCAGTGAAA | CCTTCGCTGTCTAAGGACTG |
C4-PEPC | CCCACTATCCTTCGCAAGAC | CTAGCCAGTGTTCTGCATGCCGG |
Osppc2a | CTGGTTGAGATGGTTTTCGC | GGTGTGAATTCAGGCACTTC |
SAPK8 | ATAGATGATAATGTCCAGCG | GTTCCTACAGTGGATTTTGG |
SAPK9 | CACAGCAACGCCGTCTCC | CACACTTCCACCGCTACCAA |
SAPK10 | TGCTGATGTGTGGTCGTGTG | TGCTGGTATGGTCGCCTCT |
SR40 | CAATCTGGGGACTGCTTTC | TCCTGCTTGGGCTTTTACT |
SR33 | ATATTGCCTGCTACCCGAAAG | CAGAGCAGCACCCAGTTTATTAC |
OsAmy1A | TTTCGGTCCTCATCGTCCTCC | TCCACGACTCCCAGTTGAATC |
OsAmy1C | TGGTATCGATCAGAAACCGGC | GTCCGACCTTCGTGATGACC |
OsAmy3C | AAGCATTCCACCACAATGAGC | AGGAAGTTGTACCACCCACC |
OsAmy3E | TCACCCTGTGTTGTGTCGTT | AAAGTTGTACCACCCGCCTT |
图1 不同处理对转基因水稻(PC)和野生型水稻(WT)种子活力的影响 (A) 发芽势; (B) 发芽率; (C) 发芽指数; (D) 活力指数; (E) 种子发芽图片。不同小写字母表示差异显著(P<0.05)。Bars=0.5 cm
Figure 1 Effects of different treatments on seed vigor of transgenic rice (PC) and wild type rice (WT) (A) Germination; (B) Germination rate; (C) Germination index; (D) Vigor index; (E) Images of germinating seeds at different time. Different lowercase letters indicate significant differences (P<0.05). Bars=0.5 cm
图2 不同处理下转基因水稻(PC)和野生型水稻(WT)萌发种子根长(A)、芽长(B)和根芽比(C)的变化 不同小写字母表示差异显著(P<0.05)。
Figure 2 Effects of different treatments on root length (A), shoot length (B) and root/bud ratio (C) of transgenic rice (PC) and wild type rice (WT) germinating seeds Different lowercase letters indicate significant differences (P<0.05).
图3 不同处理对转基因水稻(PC)和野生型水稻(WT)种子萌发过程中可溶性总糖含量(A)和可溶性蛋白含量(B)的影响 不同小写字母表示差异显著(P<0.05)。
Figure 3 Effects of different treatments on total soluble sugar content (A) and soluble protein content (B) of transgenic rice (PC) and wild type rice (WT) germinating seeds Different lowercase letters indicate significant differences (P<0.05).
图4 不同处理对转基因水稻(PC)和野生型水稻(WT)种子萌发过程中糖组分含量的影响 (A), (D) 分别为发芽24和48小时的蔗糖含量; (B), (E) 分别为发芽24和48小时的葡萄糖含量; (C), (F) 分别为发芽24和48小时的果糖含量。不同小写字母表示差异显著(P<0.05)。
Figure 4 Effects of different treatments on sugar content of transgenic rice (PC) and wild type rice (WT) germinating seeds (A), (D) Sucrose content at 24 h and 48 h after germination, respectively; (B), (E) Glucose content at 24 h and 48 h after germination, respectively; (C), (F) Fructose content at 24 h and 48 h after germination, respectively. Different lowercase letters indicate significant differences (P<0.05).
图5 不同处理对转基因水稻(PC)和野生型水稻(WT)种子萌发过程中SnRK相关基因表达的影响 不同小写字母表示差异显著(P<0.05)。
Figure 5 Effects of different treatments on the expression of SnRK related genes in transgenic rice (PC) and wild type rice (WT) germinating seeds Different lowercase letters indicate significant differences (P<0.05).
图6 不同处理对转基因水稻(PC)和野生型水稻(WT)种子萌发过程中剪接因子相关基因表达的影响 不同小写字母表示差异显著(P<0.05)。
Figure 6 Effects of different treatments on expression of splicing factor related genes in transgenic rice (PC) and wild type rice (WT) germinating seeds Different lowercase letters indicate significant differences (P<0.05).
图7 不同处理对转基因水稻(PC)和野生型水稻(WT)种子萌发过程中PEPC相关基因表达的影响 不同小写字母表示差异显著(P<0.05)。
Figure 7 Effects of different treatments on expression of PEPC-related genes in transgenic rice (PC) and wild type rice (WT) germinating seeds Different lowercase letters indicate significant differences (P<0.05).
图8 不同处理对转基因水稻(PC)和野生型水稻(WT)种子萌发过程中α-淀粉酶相关基因表达的影响 不同小写字母表示差异显著(P<0.05)。
Figure 8 Effects of different treatments on expression of α-amylase related genes in transgenic rice (PC) and type wild rice (WT) germinating seeds Different lowercase letters indicate significant differences (P<0.05).
图9 不同处理对转基因水稻(PC)和野生型水稻(WT)种子萌发过程中α-淀粉酶活性的影响 不同小写字母表示差异显著(P<0.05)。
Figure 9 Effects of different treatments on α-amylase activity in transgenic rice (PC) and wild type rice (WT) germinating seeds Different lowercase letters indicate significant differences (P<0.05).
[1] | 陈蕾太, 孙爱清, 杨敏, 陈路路, 马雪丽, 李美玲, 尹燕枰 (2016). 基于小麦种子发芽逆境抗逆指数的种子活力评价. 应用生态学报 27, 2968-2974. |
[2] |
杜康兮, 沈文辉, 董爱武 (2018). 表观遗传调控植物响应非生物胁迫的研究进展. 植物学报 53, 581-593.
DOI URL |
[3] | 焦德茂, 匡廷云, 李霞, 戈巧英, 黄雪清, 郝乃斌, 白克智 (2003). 转PEPC基因水稻具有初级CO2浓缩机制的生理特点. 中国科学(C辑) 33, 33-39. |
[4] | 焦德茂, 李霞, 黄雪清, 迟伟, 匡廷云, 古森本 (2001). 转PEPC基因水稻的光合CO2同化和叶绿素荧光特性. 科学通报 46, 414-418. |
[5] | 李合生 (2000). 植物生理生化实验原理和技术 北京: 高等教育出版社. pp. 123-124. |
[6] | 李美玲, 孙爱清, 杨敏, 张杰道, 王振林, 陈蕾太, 陈路路, 马雪丽, 尹燕枰 (2017). 小麦干热风抗性鉴定及热胁迫相关基因TaHSPs的表达分析. 麦类作物学报 37, 162-174. |
[7] |
刘小龙, 李霞, 钱宝云 (2015). 外源Ca2+对PEG处理下转C4型PEPC基因水稻光合生理的调节 . 植物学报 50, 206-216.
DOI URL |
[8] | 曲瑞莲, 吴春霞, 冯献忠 (2014). mRNA选择性剪切在植物发育中的作用. 植物生理学报 50, 717-724. |
[9] | 宋凝曦, 张晓敬, 陆佳岚, 李霞, 谢寅峰 (2020). 可变剪接在植物响应胁迫中的作用. 植物生理学报 56, 1201-1211. |
[10] |
张金飞, 李霞, 何亚飞, 谢寅峰 (2018). 外源葡萄糖增强高表达转玉米C4型PEPC水稻耐旱性的生理机制. 作物学报 44, 82-94.
DOI URL |
[11] |
张金飞, 李霞, 谢寅峰 (2017). 植物SnRKs家族在胁迫信号通路中的调节作用. 植物学报 52, 346-357.
DOI URL |
[12] |
Ambavaram MMR, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Baisakh N, Pereira A (2014). Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun 5, 5302.
DOI URL PMID |
[13] |
Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
URL PMID |
[14] |
Brummell DA, Chen RKY, Harris JC, Zhang HB, Hamiaux C, Kralicek AV, McKenzie MJ (2011). Induction of vacuolar invertase inhibitor mRNA in potato tubers contributes to cold-induced sweetening resistance and includes spliced hybrid mRNA variants. J Exp Bot 62, 3519-3534.
DOI URL PMID |
[15] |
Cao Y, Ma LG (2019). To splice or to transcribe: SKIP- mediated environmental fitness and development in plants. Front Plant Sci 10, 1222.
DOI URL PMID |
[16] | Chen PB, Li X, Huo K, Wei XD, Dai CC, Lv CG (2014). Promotion of photosynthesis in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene by nitric oxide donors. J Plant Physiol 6, 458-466. |
[17] |
Cruz TMD, Carvalho RF, Richardson DN, Duque P (2014). Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression. Int J Mol Sci 15, 17541-17564.
DOI URL PMID |
[18] | Damaris RN, Lin ZY, Yang PF, He DL (2019). The rice α-amylase, conserved regulator of seed maturation and germination. Int J Mol Sci 20, 450. |
[19] |
Dinesh SP, Baker BJ (2000). Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Nat Acad Sci USA 97, 1908-1913.
DOI URL PMID |
[20] | Dinkova TD, Márquez-Velázquez NA, Aguilar R, Lázaro- Mixteco PE, de Jiménez ES (2011). Tight translational control by the initiation factors eIF4E and eIF(iso)4E is required for maize seed germination. Seed Sci Res 21, 85-93. |
[21] |
Dong CL, He F, Berkowitz O, Liu JX, Cao PF, Tang M, Shi HC, Wang WJ, Li QL, Shen ZG, Whelan J, Zheng LQ (2018). Alternative splicing plays a critical role in maintaining mineral nutrient homeostasis in rice (Oryza sativa). Plant Cell 30, 2267-2285.
DOI URL PMID |
[22] |
Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006). Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81, 77-91.
DOI URL PMID |
[23] |
Filichkin SA, Cumbie JS, Dharmawardhana P, Jaiswal P, Chang JH, Palusa SG, Reddy ASN, Megraw M, Mockler TC (2015). Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis. Mol Plant 8, 207-227.
DOI URL PMID |
[24] |
Foolad MR, Subbiah P, Zhang LP (2007). Common QTL affect the rate of tomato seed germination under different stress and nonstress conditions. Int J Plant Genomics 2007, 97386.
URL PMID |
[25] | Gassmann W (2008). Alternative splicing in plant defense. In: Reddy ASN, Golovkin M, eds. Nuclear Pre-mRNA Processing in Plants. Berlin:Springer.pp. 219-233. |
[26] |
Golisz A, Sikorski PJ, Kruszka K, Kufel J (2013). Arabidopsis thaliana LSM proteins function in mRNA splicing and degradation. Nucleic Acids Res 41, 6232-6249.
DOI URL PMID |
[27] |
Hakata M, Kuroda M, Miyashita T, Yamaguchi T, Kojima M, Sakakibara H, Mitsui T, Yamakawa H (2012). Suppression of α-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnol J 10, 1110-1117.
DOI URL PMID |
[28] | He YF, Xie YF, Li X, Yang J (2020). Drought tolerance of transgenic rice overexpressing maize C4-PEPC gene related to increased anthocyanin synthesis regulated by sucrose and calcium. Biologia Plantarum 64, 136-149. |
[29] | Hu QJ, Fu YY, Guan YJ, Lin C, Cao DD, Hu WM, Sheteiwy M, Hu J (2016). Inhibitory effect of chemical combinations on seed germination and pre-harvest sprouting in hybrid rice. Plant Growth Regul 80, 281-289. |
[30] |
Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999). High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17, 76-80.
DOI URL PMID |
[31] |
Lata C, Gupta S, Prasad M (2013). Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33, 328-343.
DOI URL PMID |
[32] | Lebouteiller B, Gousset-Dupont A, Pierre JN, Bleton J, Tchapla A, Maucourt M, Moing A, Rolin D, Vidal J (2007). Physiological impacts of modulating phosphoenolpyruvate carboxylase levels in leaves and seeds of Arabidopsis thaliana. Plant Sci 172, 265-272. |
[33] |
Lev Maor G, Yearim A, Ast G (2015). The alternative role of DNA methylation in splicing regulation. Trends Genet 31, 274-280.
DOI URL PMID |
[34] | Li X, Wang C (2013). Physiological and metabolic enzymes activity changes in transgenic rice plants with increased phosphoenolpyruvate carboxylase activity during the flowering stage. Acta Physiol Plant 35, 1503-1512. |
[35] | Li X, Wang C, Ren CG (2011). Effects of 1-butanol, neomycin and calcium on the photosynthetic characteristics of pepc transgenic rice. Afr J Biotechnol 10, 17466-17476. |
[36] |
Ling Y, Alshareef S, Butt H, Lozano-Juste J, Li LX, Galal AA, Moustafa A, Momin AA, Tashkandi M, Richardson DN, Fujii H, Arold S, Rodriguez PL, Duque P, Mahfouz MM (2017). Pre-mRNA splicing repression triggers abiotic stress signaling in plants. Plant J 89, 291-309.
DOI URL PMID |
[37] |
Liu JJ, Sun N, Liu M, Liu JC, Du BJ, Wang XJ, Qi XT (2013). An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing. Plant Physiol 162, 512-521.
URL PMID |
[38] |
Liu XL, Li X, Zhang C, Dai CC, Zhou JY, Ren CG, Zhang JF (2017). Phosphoenolpyruvate carboxylase regulation in C4-PEPC-expressing transgenic rice during early responses to drought stress. Physiol Plant 159, 178-200.
URL PMID |
[39] |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using reatime quantitative PCR and the 2-ΔΔCt method . Methods 25, 402-408.
DOI URL PMID |
[40] |
Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M (2012). Transcriptome survey reveals increased comp- lexity of the alternative splicing landscape in Arabidopsis. Genome Res 22, 1184-1195.
DOI URL PMID |
[41] |
Marsh JT, Sullivan S, Hartwell J, Nimmo HG (2003). Structure and expression of phospho enolpyruvate carboxylase kinase genes in solanaceae. A novel gene exhibits alternative splicing. Plant Physiol 133, 2021-2028.
URL PMID |
[42] | Miransari M, Smith DL (2014). Plant hormones and seed germination. Environ Exp Bot 99, 110-121. |
[43] |
Muthamilarasan M, Khandelwal R, Yadav CB, Bonthala VS, Khan Y, Prasad M (2014). Identification and molecular characterization of MYB transcription factor superfamily in C4 model plant foxtail millet ( Setaria italica L.). PLoS One 9, e109920.
DOI URL PMID |
[44] |
Nakata M, Fukamatsu Y, Miyashita T, Hakata M, Kimura R, Nakata Y, Kuroda M, Yamaguchi T, Yamakawa H (2017). High temperature-induced expression of rice α-amylases in developing endosperm produces chalky grains. Front Plant Sci 8, 2089.
DOI URL PMID |
[45] |
Nanjo Y, Asatsuma S, Itoh K, Hori H, Mitsui T (2004). Proteomic identification of α-amylase isoforms encoded by RAmy3B/3C from germinating rice seeds. Biosci Biotechnol Biochem 68, 112-118.
DOI URL PMID |
[46] |
O’Leary B, Park J, Plaxton WC (2011). The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436, 15-34.
URL PMID |
[47] | Prasad PVV, Pisipati SR, Momčilović I, Ristic Z (2011). Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197, 430-441. |
[48] |
Qian BY, Li X, Liu XL, Wang M (2015). Improved oxidative tolerance in suspension-cultured cells of C4-pepc trans- genic rice by H2O2 and Ca2+ under PEG-6000. J Integr Plant Biol 57, 534-549.
DOI URL PMID |
[49] |
Reddy ASN, Shad Ali G (2011). Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. Wiley Interdiscip Rev RNA 2, 875-889.
DOI URL PMID |
[50] |
Ren CG, Li X, Liu XL, Wei XD, Dai CC (2014). Hydrogen peroxide regulated photosynthesis in C4- pepc transgenic rice. Plant Physiol Biochem 74, 218-229.
DOI URL PMID |
[51] |
Somani BL, Khanade J, Sinha R (1987). A modified anthrone-sulfuric acid method for the determination of fructose in the presence of certain proteins. Anal Biochem 167, 327-330.
DOI URL PMID |
[52] |
Staiger D, Brown JWS (2013). Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25, 3640-3656.
DOI URL PMID |
[53] |
Syed NH, Kalyna M, Marquez Y, Barta A, Brown JWS (2012). Alternative splicing in plants-coming of age. Trends Plant Sci 17, 616-623.
DOI URL PMID |
[54] |
Tang YT, Li X, Lu W, Wei XD, Zhang QJ, Lv CG, Song NX (2018). Transgenic rice over-expressing maize C4 phosphoenolpyruvate carboxylase gene contributes to alleviating low nitrogen stress. Plant Physiol Biochem 130, 577-588.
DOI URL PMID |
[55] |
Wang BB, Brendel V (2006). Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci USA 103, 7175-7180.
DOI URL PMID |
[56] |
Yan HH, Kikuchi S, Neumann P, Zhang WL, Wu YF, Chen F, Jiang JM (2010). Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant J 63, 353-365.
DOI URL PMID |
[57] |
Zhang C, Li X, He YF, Zhang JF, Yan T, Liu XL (2017). Physiological investigation of C4-phosphoenolpyruvate- carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance. Plant Physiol Biochem 115, 328-342.
URL PMID |
[58] |
Zhang P, Deng H, Xiao FM, Liu YS (2013). Alterations of alternative splicing patterns of Ser/Arg-rich (SR) genes in response to hormones and stresses treatments in different ecotypes of rice (Oryza sativa). J Integr Agric 12, 737-748.
DOI URL |
[59] |
Zhang XC, Gassmann W (2007). Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses. Plant Physiol 145, 1577-1587.
DOI URL PMID |
[1] | 史欢欢 雪穷 于振林 汪承焕. 密度、物种比例对盐沼植物种子萌发阶段种内、种间相互作用的影响[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 李永光, 任辉, 张英杰, 李瑞宁, 艾昊, 黄先忠. 十字花科植物PEBP基因家族的分子进化[J]. 生物多样性, 2022, 30(6): 21545-. |
[3] | 张敏, 朱教君. 光温条件对不同种源红松种子萌发的影响[J]. 植物生态学报, 2022, 46(6): 613-623. |
[4] | 魏和平, 芦涛, 贾绮玮, 邓飞, 朱浩, 岂泽华, 王玉玺, 叶涵斐, 殷文晶, 方媛, 穆丹, 饶玉春. 水稻抽穗期QTL定位及候选基因分析[J]. 植物学报, 2022, 57(5): 588-595. |
[5] | 刘晓龙, 季平, 杨洪涛, 丁永电, 付佳玲, 梁江霞, 余聪聪. 脱落酸对水稻抽穗开花期高温胁迫的诱抗效应[J]. 植物学报, 2022, 57(5): 596-610. |
[6] | 贾利霞, 齐艳华. 生长素代谢、运输及信号转导调控水稻粒型研究进展[J]. 植物学报, 2022, 57(3): 263-275. |
[7] | 杨凯如, 贾绮玮, 金佳怡, 叶涵斐, 王盛, 陈芊羽, 管易安, 潘晨阳, 辛德东, 方媛, 王跃星, 饶玉春. 水稻黄绿叶调控基因YGL18的克隆与功能解析[J]. 植物学报, 2022, 57(3): 276-287. |
[8] | 叶涵斐, 殷文晶, 管易安, 杨凯如, 陈芊羽, 俞淑颖, 朱旭东, 辛德东, 章薇, 王跃星, 饶玉春. 水稻籽粒维生素E QTL挖掘及候选基因分析[J]. 植物学报, 2022, 57(2): 157-170. |
[9] | 王璐瑶, 陈謇, 赵守清, 闫慧莉, 许文秀, 刘若溪, 麻密, 虞轶俊, 何振艳. 水稻镉积累特性的生理和分子机制研究概述[J]. 植物学报, 2022, 57(2): 236-249. |
[10] | 余泓, 李家洋. 是金子无论在何处都发光: 玉米和水稻驯化中的趋同选择[J]. 植物学报, 2022, 57(2): 153-156. |
[11] | 王霞, 严维, 周志勤, 常振仪, 郑敏婷, 唐晓艳, 吴建新. 水稻雄性不育突变体ms102的鉴定和基因定位[J]. 植物学报, 2022, 57(1): 42-55. |
[12] | 胡德美, 姚仁秀, 陈燕, 游贤松, 王顺雨, 汤晓辛, 王晓月. 青篱柴通过促进亲和花粉生长而提高传粉精确性[J]. 生物多样性, 2021, 29(7): 887-896. |
[13] | 王田幸子, 朱峥, 陈悦, 刘玉晴, 燕高伟, 徐珊, 张彤, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻OsWRKY42是Xa21介导的抗白叶枯病途径新元件[J]. 植物学报, 2021, 56(6): 687-698. |
[14] | 尚江源, 淳雁, 李学勇. 水稻穗长基因PAL3的克隆及自然变异分析[J]. 植物学报, 2021, 56(5): 520-532. |
[15] | 周俭民. 免疫信号轴揭示水稻与病原菌斗争的秘密[J]. 植物学报, 2021, 56(5): 513-515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||