植物学报 ›› 2015, Vol. 50 ›› Issue (5): 637-.DOI: 10.11983/CBB14177
收稿日期:
2014-09-29
接受日期:
2015-01-27
出版日期:
2015-09-01
发布日期:
2015-10-09
通讯作者:
胡一兵
作者简介:
? 共同第一作者
基金资助:
Minghong Wang1, Lai Ma2, Xiaojiang Zheng1, Yibing Hu1,2,3*
Received:
2014-09-29
Accepted:
2015-01-27
Online:
2015-09-01
Published:
2015-10-09
Contact:
Hu Yibing
About author:
? These authors contributed equally to this paper
摘要: 生长发育是一个复杂的动态过程, 了解其发生细节是生命科学研究的重要内容。最新发展起来的微流芯片技术为实现这个目标提供了新的途径。动物及微生物中的应用表明, 该技术兼有实时定量监测和高通量整合处理的优势。在植物研究领域, 用针对根生长特点和要求设计的根微流芯片结合荧光共振能量转移探针已经成功地检测出拟南芥(Arabidopsis thaliana)根细胞内葡萄糖和游离的Ca2+、Zn2+的浓度。随着各种底物特异的荧光共振能量转移探针的开发和应用, 根微流芯片还可以用来检测植物细胞内激素或其它代谢中间产物的浓度及其动态变化过程。不仅如此, 以微流芯片为基础发展起来的Plant Chip和Tip Chip则为研究植物与微生物的相互作用以及植物花粉管极性生长和细胞分裂分化提供了理想的平台。作为了解遗传因素或环境刺激导致细胞生命活动变化细节的有力工具, 微流芯片技术有望为植物研究领域带来更多新的进展和突破。
王明红, 马来, 郑小江, 胡一兵. 植物微流芯片——一种实时定量监测生长发育的 高通量整合分析平台. 植物学报, 2015, 50(5): 637-.
Minghong Wang, Lai Ma, Xiaojiang Zheng, Yibing Hu. Plant Microfluidic Chip, an Integrated High-throughput Platform for Real-time Analysis of Plant Growth and Development. Chinese Bulletin of Botany, 2015, 50(5): 637-.
图1 FRET sensor原理及根微流芯片示意图(A) 锌离子的FRETsensor蛋白在结合锌离子前后空间构象的变化以及它受到433 nm激发光照射时产生的发射光谱变化示意图(根据Evers, 2007); (B) 单个微流通道结构示意图, 箭头示溶液流动方向; (C) 根微流芯片实物图(Grossmann et al., 2011, Plant Cell) (Bar=1cm)
Figure 1 Schematic figures of FRET sensor and root microfluidic chip(A) Spatial conformation and emission light variations of Zinc FRET sensor before and after binding of Zinc ion (Based on Evers, 2007); (B) Schematic structure of a single microfluidic channel and the plant growth support system; (C) A 8-channel root microfluidic chip (Grossmann et al., 2011, Plant Cell) (Bar=1 cm)
1 | 曹继容, 钟广炎, 王其兵 (2014). 植物离子组学及其研究方法与应用进展. 植物学报 49, 504-513. |
2 | 董淼, 黄越, 陈文铎, 徐涛, 郎秋蕾 (2013). 降解组测序技术在植物miRNA研究中的应用. 植物学报 48, 344-353. |
3 | 黄儒, 苍晶, 于晶, 卢宝伟, 刘丽杰, 王健飞, 郭人铭, 徐琛 (2014). 冬小麦小RNA高通量测序及生物信息学分析. 植物学报 49, 8-18. |
4 | 王进军, 陈小川, 邢达 (2003). FRET技术及其在蛋白质-蛋白质分子相互作用研究中的应用. 生物化学与生物物理进展 30, 980-984. |
5 | 王盛, 陈典华, 蒋驰洲, 吴琼, 李煌, 华子春 (2012). 基于荧光蛋白的荧光共振能量转移探针的构建及应用. 中国细胞生物学学报 34, 1258-1267. |
6 | 玄元虎, 朱毅勇, 胡一兵 (2014). SWEET蛋白家族研究进展. 中国科学: 生命科学 44, 676-684. |
7 | Bermejo C, Ewald JC, Lanquar V, Jones AM, Frommer WB (2011a). In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast.Biochem J 438, 1-10. |
8 | Bermejo C, Haerizadeh F, Takanaga H, Chermak D, Frommer WB (2010). Dynamic analysis of cytosolic glucose and ATP levels in yeast using optical sensors.Biochem J 432, 399-406. |
9 | Bermejo C, Haerizadeh F, Takanaga H, Chermak D, Frommer WB (2011b). Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nat Protoc 6, 1806-1817. |
10 | Campbell RE (2009). Fluorescent-protein-based biosensors: modulation of energy transfer as a design principle.Anal Chem 81, 5972-5979. |
11 | Chaudhuri B, Hörmann F, Frommer WB (2011). Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants. J Exp Bot 62, 2411-2417. |
12 | Davidson MW, Campbell RE (2009). Engineered fluorescent proteins: innovations and applications.Nat Meth 6, 713-717. |
13 | Dean KM, Qin Y, Palmer AE (2012). Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes.Biochim Biophys Acta 1823, 1406-1415. |
14 | Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T, Ehrhardt DW, Frommer WB, Sprunck S, Dresselhaus T, Grossmann G (2014). Male-female communication triggers calcium signatures during fertilization in Arabidopsis.Nat Commun 5, 4645. |
15 | Ehrhardt DW, Frommer WB (2012). New technologies for 21st century plant science.Plant Cell 24, 374-394. |
16 | Emmanouilidou E, Teschemacher AG, Pouli AE, Nicholls LI, Seward EP, Rutter GA (1999). Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted cameleon.Curr Biol 9, 915-918. |
17 | Evers TH (2007). FRET-based Sensor Proteins: A Molecular Picture. Eindhoven: Technische Universiteit Eindhoven. pp. 19. |
18 | Grossmann G, Guo WJ, Ehrhardt DW, Frommer WB, Sit RV, Quake SR, Meier M (2011). The RootChip: an integrated microfluidic chip for plant science. Plant Cell 23, 4234-4240. |
19 | Grossmann G, Meier M, Cartwright HN, Sosso D, Quake SR, Ehrhardt DW, Frommer WB (2012). Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip. J Vis Exp 65, 4290. |
20 | Haydon MJ (2014). Getting a sense for zinc in plants.New Phytol 202, 10-12. |
21 | Horade M, Yanagisawa N, Mizuta Y, Higashiyama T, Arata H (2014). Growth assay of individual pollen tubes arrayed by microchannel device.Microelectron Eng 118, 25-28. |
22 | Hu CX, Kearn J, Urwin P, Lilley C, O'Connor V, Holden-Dye L, Morgan H (2014). StyletChip: a microfluidic device for recording host invasion behaviour and feeding of plant parasitic nematodes.Lab Chip 14, 2447-2455. |
23 | Jiang HW, Xu Z, Aluru MR, Dong L (2014). Plant chip for high-throughput phenotyping of Arabidopsis.Lab Chip 14, 1281-1293. |
24 | Jones AM, Danielson JA, Manojkumar SN, Lanquar V, Grossmann G, Frommer WB (2014). Abscisic acid dynamics in roots detected with genetically encoded FRET sensors.Elife 3, e01741. |
25 | Jones AM, Grossmann G, Danielson JÅH, Sosso D, Chen LQ, Ho CH, Frommer WB (2013). In vivo biochemistry: applications for small molecule biosensors in plant biology.Curr Opin Plant Biol 16, 389-395. |
26 | Kao JPY, Li G, Auston DA (2010). Chapter 5—practical aspects of measuring intracellular calcium signals with fluorescent indicators.Methods Cell Biol 99, 113-152. |
27 | Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K (2012). FRET- based genetically encoded sensors allow high-resolution live cell imaging of Ca2+ dynamics.Plant J 69, 181-192. |
28 | Lanquar V, Grossmann G, Vinkenborg JL, Merkx M, Thomine S, Frommer WB (2014). Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology.New Phytol 202, 198-208. |
29 | Looger LL, Lalonde S, Frommer WB (2005). Genetically encoded FRET sensors for visualizing metabolites with subcellular resolution in living cells.Plant Physiol 138, 555-557. |
30 | Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hübener M, Griesbeck O (2008). A genetically encoded calcium indicator for chronic in vivo two-photon imaging.Nat Methods 5, 805-811. |
31 | Meier M, Lucchetta EM, Ismagilov RF (2010). Chemical stimulation of the Arabidopsis thaliana root using multi-laminar flow on a microfluidic chip.Lab Chip 10, 2147-2153. |
32 | Mérola F, Fredj A, Betolngar DB, Ziegler C, Erard M, Pasquier H (2014). Newly engineered cyan fluorescent proteins with enhanced performances for live cell FRET imaging.Biotechnol J 9, 180-191. |
33 | Nezhad SA (2014). Microfluidic platforms for plant cells studies. Lab Chip 14, 3262-3274. |
34 | Nezhad SA, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013a). Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling.Proc Natl Acad Sci USA 110, 8093-8098. |
35 | Nezhad SA, Packirisamy M, Bhat R, Geitmann A (2013b). In vitro study of oscillatory growth dynamics of Camellia pollen tubes in microfluidic environment. IEEE Trans Biomed Eng 60, 3185-3193. |
36 | Okumoto S (2014). Quantitative imaging approaches for small-molecule measurements using FRET sensors in plants. In: Sriram G, ed. Plant Metabolism. New York: Humana Press. pp. 55-64. |
37 | Okumoto S, Jones A, Frommer WB (2012). Quantitative imaging with fluorescent biosensors. Annu Rev Plant Biol 63, 663-706. |
38 | Park JG, Palmer AE (2014). Quantitative measurement of Ca2+ and Zn2+ in mammalian cells using genetically encoded fluorescent biosensors. In: Zhang J, Ni Q, Newman RH, eds. Fluorescent Protein-Based Biosensors. New York: Humana Press. pp. 29-47. |
39 | Sozzani R, Busch W, Spalding EP, Benfey PN (2014). Advanced imaging techniques for the study of plant growth and development.Trends Plant Sci 19, 304-310. |
40 | Takanaga H, Chaudhuri B, Frommer WB (2008). GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor.Biochim Biophys Acta 1778, 1091-1099. |
41 | Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000). Monolithic microfabricated valves and pumps by multilayer soft lithography.Science 288, 113-116. |
42 | Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M (2009). Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Meth 6, 737-740. |
43 | Whitesides GM (2006). The origins and the future of microfluidics.Nature 442, 368-373. |
44 | Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y (2011). A microsystem-based assay for studying pollen tube guidance in plant reproduction.J Micromech Microeng 21, 054018. |
[1] | 罗正明, 刘晋仙, 张变华, 周妍英, 郝爱华, 杨凯, 柴宝峰. 不同退化阶段亚高山草甸土壤原生生物群落多样性特征及驱动因素[J]. 生物多样性, 2023, 31(8): 23136-. |
[2] | 张仲富, 王四海, 杨卫, 陈剑. 蒜头果根际细菌群落结构与功能特征对其健康状态的响应[J]. 植物生态学报, 2023, 47(7): 1020-1031. |
[3] | 毛莹儿, 周秀梅, 王楠, 李秀秀, 尤育克, 白尚斌. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 2023, 31(6): 22659-. |
[4] | 白雪, 李玉靖, 景秀清, 赵晓东, 畅莎莎, 荆韬羽, 刘晋汝, 赵鹏宇. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418-433. |
[5] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[6] | 夏凡, 杨婧, 李建, 史洋, 盖立新, 黄文华, 张经纬, 杨南, 高福利, 韩莹莹, 鲍伟东. 北京地区四个豹猫亚种群肠道菌群的组成[J]. 生物多样性, 2022, 30(9): 22103-. |
[7] | 石水琴, 秦华光, 张静静, 韩钰, 余淏, 彭怡宁, 杨邵, 汪嘉怡, 何光宇, 岂泽华, 吴文杰, 朱星雨, 饶玉春, 穆丹. 濒危植物大别山五针松根际细菌群落特征与功能分析[J]. 植物学报, 2022, 57(4): 457-467. |
[8] | 孙翌昕, 李英滨, 李玉辉, 李冰, 杜晓芳, 李琪. 高通量测序技术在线虫多样性研究中的应用[J]. 生物多样性, 2022, 30(12): 22266-. |
[9] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[10] | 夏呈强, 李毅, 党延茹, 察倩倩, 贺晓艳, 秦启龙. 中印度洋与南海西部表层海水细菌多样性[J]. 生物多样性, 2022, 30(1): 21407-. |
[11] | 陆奇丰, 黄至欢, 骆文华. 极小种群濒危植物广西火桐、丹霞梧桐的叶绿体基因组特征[J]. 生物多样性, 2021, 29(5): 586-595. |
[12] | 王楠, 黄菁华, 霍娜, 杨盼盼, 张欣玥, 赵世伟. 宁南山区不同植被恢复方式下土壤线虫群落特征:形态学鉴定与高通量测序法比较[J]. 生物多样性, 2021, 29(11): 1513-1529. |
[13] | 裴广廷, 孙建飞, 贺同鑫, 胡宝清. 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2021, 45(1): 74-84. |
[14] | 靳新影, 张肖冲, 金多, 陈韵, 李靖宇. 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征[J]. 生物多样性, 2020, 28(6): 718-726. |
[15] | 韩本凤, 周欣, 张雪. 基因组学技术在病毒鉴定与宿主溯源中的应用[J]. 生物多样性, 2020, 28(5): 587-595. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||