Chin Bull Bot ›› 2018, Vol. 53 ›› Issue (4): 487-501.doi: 10.11983/CBB17082

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Analysis of Meta-quantitative Trait Loci and Their Candidate Genes Related to Leaf Shape in Maize

Guo Shulei1,2, Zhang Jun1, Qi Jianshuang1, Yue Runqing1, Han Xiaohua1, Yan Shufeng1, Lu Caixia1, Fu Xiaolei1, Chen Nana1, Ku Lixia2,*(), Tie Shuanggui1,*()   

  1. 1Henan Provincial Key Lab of Maize Biology, Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
    2Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agriculture University, Zhengzhou 450002, China
  • Received:2017-04-13 Accepted:2017-10-25 Online:2018-09-11 Published:2018-07-01
  • Contact: Ku Lixia,Tie Shuanggui;
  • About author:† These authors contributed equally to this paper


Leaf length, width, area, and angle are important components of plant architecture but also affect the efficiency of photosynthesis in maize. In this study, 620 quantitative trait loci (QTL) were used to construct an integrated map related to maize leaf shape; 22 maize QTL (mQTL) for leaf length, 22 for leaf width, 12 for leaf area and 17 for leaf angle were estimated by meta-analysis. Further bioinformatics analysis identified 44 candidate genes closely related to leaf shape within the mQTL region, with some unintegrated QTL. However, only 13 candidate genes, including NAL7-like, YABBY6-like, and GRF2, were located in the mQTL region. Most of the candidate genes, such as the cloned genes KNOTTED1, AN3/GIF1, rgd1/lbl1 and mwp1 in maize and SRL2-like, HYL1-like, and CYCB2;4-like in rice and Arabidopsis thaliana homologous genes were projected onto the interval of unintegrated QTL. The regulation mechanism of 44 candidate genes is summarized and analyzed in the development of leaf length, width and thickness, by proximal-distal, central-marginal and adaxial-abaxial. Only a few known genes revealed part of the molecular mechanism of leaf deve- lopment in maize. Further research of the mQTL/QTL and related genes will create a global view of the genetic architecture of maize leaf shape, provide useful biological information for fine mapping QTL, and identify more candidate genes to clarify the molecular mechanism of leaf morphogenesis and provide a theoretical base for ideal plant-architecture improvement of maize marker-assisted breeding.

Key words: maize (Zea mays), leaf length, leaf width, leaf area, leaf angle, meta-analysis, meta-QTL, candidate gene

Table 1

Summary of the QTL of leaf shape in maize reported previously"

Parents Type of Pop. Pop.
No. of
QTL for
No. of
QTL for
No. of
QTL for
No. of QTL for LA No./type
of marker
Analysis method Reference
B73×G79 F2:3 214 7 185/RFLP IM Agrama et al., 1999
B73×Mo17 RIL 180 9 192/SSR CIM Mickelson et al., 2002
H21×Mo17 F2:3 120 7 102/SSR CIM 于永涛等, 2006
Zi330×K36 F2:3 114 2 90/SSR CIM 于永涛等, 2006
Ye478×Dan340 F2:3 397 6 138/SSR CIM 路明等, 2007
Mo17×Huangzao4 RIL 239 4 2 5 98/SSR CIM 郑祖平等, 2007
Ye478×Wu312 RIL 218 7 184/SSR ICIM 刘建超等, 2010
Yu82×Shen137 F2:3 229 3 4 13 3 222/SSR CIM Ku et al., 2010, 2012a
Yu82×Yu87-1 F2:3 256 5 5 5 216/SSR CIM Ku et al., 2012b
B73/Mo17 etc. NAM 4892 36 34 30 203000/SNP GWAS Tian et al., 2011
N6×BT-1 RIL 250 6 207/SSR CIM 李贤唐等, 2011
Y105×Y106 F2 189 5 7 6 8 215/SSR ICIM 郭莹, 2012
Y114×Y115 F2 189 1 1 2 3 204/SSR ICIM 郭莹, 2012
Ye478×Wu312 RIL 218 14 7 9 184/SSR CIM Cai et al., 2012
Yu82×D132 F2:3 245 18 204/SSR CIM Ku et al., 2012
B73×1212 RIL 325 67 62 208/SSR ICIM 唐登国, 2013
B73×Mo17 RIL 93 1 2 3 IBM2 map CIM Wassom, 2013
CY5×YL106 F2:3 144 8 212/SSR CIM 刘正等, 2014
CP 228 13 225/SSR IM 张姿丽等, 2014b
T4×T19 F2:3 232 4 81/SSR CIM 张姿丽等, 2014a
Yu82×Yu87-1 RIL 208 18 1370/SNP CIM Guo et al., 2015
Yu82×Shen137 RIL 197 9 1411/SNP CIM Guo et al., 2015
Zong3×Yu87-1 RIL 223 10 1479/SNP CIM Guo et al., 2015
Yu537A×Shen137 RIL 212 9 1371/SNP CIM Guo et al., 2015
B73×Mo17 DH 221 9 17 16 12 5935/bin markers ICIM 张志腾, 2015
Xu178×K12 RIL 150 34 191/SSR CIM 常立国等, 2016
M1-7×SYF F2 259 36 218/SSR CIM 安允权等, 2016
Yu82×D132 RIL 234 5 7 4 1226/SNP CIM Wei et al., 2016

Table 2

Candidate genes for maize leaf shape of mQTL/QTL"

Bin mQTL/QTL CI (cM) Candidate gene Annotation Homologous gene E-value Reference
1.02 mQTLW1-1 153.8-158.3 GRMZM2G480386 NAL7-like Os03g0162000/YUCCA7 0 Fujino et al., 2008
1.04 q12SevLW1 270.6-286.2 GRMZM2G011483 SRL2-like Os03g19520/SRL2 0 Liu et al., 2016
1.05 mQTLW1-2 485.9-505.6 GRMZM2G141955 YABBY6-like Os12g42610/YAB6 3E-88 Toriba et al., 2007;
Zhang et al., 2009
GRMZM2G003509 PHB-like AT2G34710/AtHB14 0 Kim et al., 2003; Mallory et al., 2004
1.09 mQTLW1-3 820.6-845.5 GRMZM2G018414 GRF8 AT4G37740/AtGRF2 4E-37 Debernardi et al., 2014
1.10 q4LWm139 873.7-902.1 GRMZM2G017087 KNOTTED1 AT4G08150/KN1 2E-114 Ramirez et al., 2009
GRMZM2G178261 GRF1-like AT2G22840/AtGRF1 2E-66 Kim et al., 2003
GRMZM2G180246 AN3/GIF1 AT5G28640/AtAN3/GIF1 1E-36 Nelissen et al., 2015
1.11 q4LLm155 941.6-1022.3 GRMZM2G135447 OSH43-like Os03g0771500/OsH43 4E-99 Sentoku et al., 2000
2.02 q3LAr2a 67.5-79.7 GRMZM2G174784 AP2-like AT4G36920/AP2 7E-102 Würschum et al., 2006; Mlotshwa et al., 2006
2.02 mQTLW2-1 118.3-147.8 GRMZM2G102346 NAL1-like Os04g52479/NAL1 0 Kubo et al., 2017
GRMZM2G041223 GRF6 AT3G13960/AtGRF5 1E-36 Horiguchi et al., 2006; Debernardi et al., 2014
2.06 q4RLAr2 355.7-374.4 GRMZM2G444808 HYL1-like AT1G09700/HYL1 6E-56 Liu et al., 2011
2.06 q8SecLW2 370.0-381.6 GRMZM2G083972 LNG2-like AT3G02170/LNG2 6E-57 Lee et al., 2006
GRMZM2G161382 CYCD3;3-like AT3G50070/CYCD3;3 5E-56 Dewitte et al., 2007
2.07 q7LL2b 450.0-461.9 GRMZM2G004619 GRF4 AT4G37740/AtGRF2 5E-28 Kim et al., 2003
2.10 q12LAr2 713.1-732.4 GRMZM2G146688 ANT-like AT4G37750/ANT 1E-131 Mizukami and Fis- cher, 2000
3.02 q4LWm309 69.6-90.3 GRMZM2G143235 ROT3-like AT4G36380/ROT3 1E-176 Kim et al., 1998
3.06 mQTLW3-2 368.5-390.3 GRMZM2G118250 AS2-like AT1G65620/AS2 1E-66 Iwakawa et al., 2007
3.08 q4LWm410 613.6-653.7 GRMZM2G437460 ARF3-like AT2G33860/ARF3/ETT 1E-169 Kelley et al., 2012
4.04 q13NLW4 220.5-230.6 GRMZM2G402653 OSH1-like Os03g0727000/OsH1 1E-75 Matsuoka et al., 1993
4.06 mQTLW4 373.7-399.4 GRMZM2G124566 GRF9-like AT2G36400/AtGRF3 1E-36 Kim et al., 2003
4.08 q7LL4 429.5-451.0 GRMZM2G075117 CYCD3;1-like AT4G34160/CYCD3;1 4E-47 Dewitte et al., 2007
GRMZM2G105335 GRF3 AT3G13960/AtGRF5 8E-49 Horiguchi et al., 2006; Debernardi et al., 2014
5.03 q4LWm602 268.8-295.0 GRMZM2G361518 AGO10-like AT5G43810/AGO10/ZLL 0 Zhu et al., 2011; Roodbarkelari et al., 2015
5.03 q4LLm605 280.1-296.1 GRMZM2G171349 COW1-like AT4G34580/COW1 3E-66 Woo et al., 2007
5.06 q4LLm661 500.7-521.1 GRMZM2G034876 GRF1 AT3G13960/AtGRF5 1E-47 Horiguchi et al., 2006; Debernardi et al., 2014
5.07 mQTLW5-3 556.7-578.5 GRMZM5G893117 GRF9 AT3G13960/AtGRF5 1E-27 Horiguchi et al., 2006; Debernardi et al., 2014
6.01 q8FirLW6-1 82.3-93.9 GRMZM2G122537 PRS1-like AT2G28610/PRS1 6E-29 Matsumoto and Ok- ada, 2001; Nakata
et al., 2012
GRMZM2G020187 rgd1/lbl1 AT5G23570/SGS3 1E-157 Dotto et al., 2014
mQTL/QTL CI (cM) Candidate gene Annotation Homologous gene E-value Reference
6.01 mQTLAr6 92.8-108.9 GRMZM2G098594 GRF14 AT3G13960/AtGRF5 1E-36 Horiguchi et al., 2006; Debernardi
et al., 2014
6.02 q7PLL6 123.0-144.8 GRMZM2G073671 CYCB2;3-like AT1G20610/CYCB2;3 1E-144 Eloy et al., 2011
GRMZM2G157820 CLF-like AT2G23380/CLF 0 Menges et al., 2005; Schatlowski et al., 2010
6.04 q4LWm706 158.2-205.1 GRMZM5G850129 GRF7 AT3G13960/AtGRF5 4E-41 Horiguchi et al., 2006; Debernardi et al., 2014
7.00 q4LWm762 8.0-93.0 GRMZM2G028041 OSH15-like Os07g0129700/OsH15 1.E-168 Nagasaki et al., 2001
GRMZM2G019200 DRL1-like Os11g0312782/DRL1 0 Jun et al., 2015
7.02 q12EigLW7 200.7-217.9 GRMZM2G107377 CYCD3;2-like AT5G67260/CYCD3;2 8E-49 Dewitte et al., 2007
7.02 q12FirLW7 229.3-246.3 GRMZM2G082264 mwp1 Os09g23200/SLL1/Kan1 2E-170 Candela et al., 2008
7.03 q3LW7 380.6-498.2 GRMZM2G096709 GRF10 AT4G37740/AtGRF2 4E-29 Kim et al., 2003; Deb- ernardi et al., 2014
8.08 q3LW8 599.1-603.8 GRMZM5G874163 ARF4-like AT5G60450/ARF4 7E-120 Pekker et al., 2005;
Hunter et al., 2006
9.03 mQTLW9 206.1-230.6 GRMZM2G119359 GRF12 AT2G06200/AtGRF6 1E-30 Kim et al., 2003;
Liang et al., 2014
GRMZM5G870176 NRL-like Os12g36890/CSLD4 0 Hu et al., 2010
10.04 mQTLW10 295.6-327.3 GRMZM2G078641 GRF2 GRAT3G13960/AtGRF7 3E-156 Horiguchi et al., 2006; Debernardi et al., 2014
10.06 q1HNLAr10 367.0-383.9 GRMZM2G061287 CYCB2;4-like AT1G76310/CYCB2;4 9E-148 Menges et al., 2005; Eloy et al., 2011

Figure 1

Distribution of leaf shape mQTL on maize chromosomes in the integrated mapChr: Chromosome. The red region is the identified location of the overlaps of mQTL on the chromosome; The position distribution and the name for mQTL are listed in the left of chromosome; Marker name and genetic distance (cM) are listed in the right of chromosome."

Figure 2

Phylogenetic trees of amino acid sequences of 44 candidate genes related to leaf shape of maizeFunction of candidate genes which have been known and cloned related to maize leaf shape are highlighted in the box"

42 Lee YK, Kim GT, Kim IJ, Park J, Kwak SS, Choi G, Chung WI (2006). LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 133, 4305-4314.
43 Liang G, He H, Li Y, Wang F, Yu DQ (2014). Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis.Plant Physiol 164, 249-258.
44 Liu XF, Li M, Liu K, Tang D, Sun MF, Li YF, Shen Y, Du GJ, Cheng ZK (2016). Semi-Rolled Leaf 2 modulates rice leaf rolling by regulating abaxial side cell differentiation. J Exp Bot 67, 2139-2150.
45 Liu ZY, Jia LG, Wang H, He YK (2011). HYL1 regulates the balance between adaxial and abaxial identity for leaf flattening via miRNA-mediated pathways.J Exp Bot 62, 4367-6381.
46 Luan WJ, Liu YQ, Zhang FX, Song YL, Wang ZY, Peng YK, Sun ZX (2011). OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. Plant Biotechnol J 9, 513-524.
47 Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang GL, Zamore PD, Barton MK, Bartel DP (2004). MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region.EMBO J 23, 3356-3364.
48 Matsumoto N, Okada K (2001). A homeobox gene, PRES- SED FLOWER, regulates lateral axis-dependent deve- lopment of Arabidopsis flowers. Genes Dev 15, 3355-3364.
49 Matsuoka M, Ichikawa H, Saito A, Tada Y, Fujimura T, Kano-Murakami Y (1993). Expression of a rice homeobox gene causes altered morphology of transgenic plants.Plant Cell 5, 1039-1048.
50 Menges M, de Jager SM, Gruissem W, Murray JAH (2005). Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control.Plant J 41, 546-566.
51 Mickelson SM, Stuber CS, Senior L, Kaeppler SM (2002). Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize.Crop Sci 42, 1902-1909.
52 Mizukami Y, Fischer RL (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97, 942-947.
53 Mlotshwa S, Yang ZY, Kim YJ, Chen XM (2006). Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana.Plant Mol Biol 61, 781-793.
54 Nagasaki H, Sakamoto T, Sato Y, Matsuoka M (2001). Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15.Plant Cell 13, 2085-2098.
55 Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, Okada K (2012). Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 24, 519-535.
56 Nardmann J, Ji JB, Werr W, Scanlon MJ (2004). The maize duplicate genes narrow sheath 1 and narrow sheath 2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131, 2827-2839.
57 Nelissen H, Eeckhout D, Demuynck K, Persiau G, Walton A, Van Bel M, Vervoort M, Candaele J, de Block J, Aes- aert S, Van Lijsebettens M, Goormachtig S, Vandepoele K, Van Leene J, Muszynski M, Gevaert K, Inzé D, De Jaeger G (2015). Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf.Plant Cell 27, 1605-1619.
58 Pekker I, Alvarez JP, Eshed Y (2005). Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity.Plant Cell 17, 2899-2910.
59 Qi J, Qian Q, Bu QY, Li SY, Chen Q, Sun JQ, Liang WX, Zhou YH, Chu CC, Li XG, Ren FG, Palme K, Zhao BR, Chen JF, Chen MS, Li CY (2008). Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol 147, 1947-1959.
60 Ramirez J, Bolduc N, Lisch D, Hake S (2009). Distal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection.Plant Physiol 151, 1878-1888.
61 Reymond M, Muller B, Tardieu F (2004). Dealing with the genotype×environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters.J Exp Bot 55, 2461-2472.
62 Roodbarkelari F, Du F, Truernit E, Laux T (2015). ZLL/ AGO10 maintains shoot meristem stem cells during Arabidopsis embryogenesis by down-regulating ARF2- mediated auxin response.BMC Biol 13, 74.
63 Scanlon MJ, Chen KD, McKnight CC (2000). The narrow sheath duplicate genes: sectors of dual aneuploidy reveal ancestrally conserved gene functions during maize leaf development. Genetics 155, 1379-1389.
64 Schatlowski N, Stahl Y, Hohenstatt ML, Goodrich J, Schubert D (2010). The CURLY LEAF interacting protein BLISTER controls expression of polycomb-group target genes and cellular differentiation of Arabidopsis thaliana. Plant Cell 22, 2291-2305.
65 Sentoku N, Sato Y, Matsuoka M (2000). Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants. Dev Biol 220, 358-364.
66 Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011). Genome-wide association study of leaf architecture in the maize nested association mapping population.Nat Genet 43, 159-162.
67 Timmermans MC, Schultes NP, Jankovsky JP, Nelson T (1998). Leaf bladeless 1 is required for dorsoventrality of lateral organs in maize. Development 125, 2813-2823.
68 Toriba T, Harada K, Takamura A, Nakamura H, Ichikawa H, Suzaki T, Hirano HY (2007). Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol Genet Genom 277, 457-468.
69 Vercruyssen L, Verkest A, Gonzalez N, Heyndrickx KS, Eeckhout D, Han SK, Jégu T, Archacki R, Van Leene J, Andriankaja M, De Bodt S, Abeel T, Coppens F, Dhondt S, De Milde L, Vermeersch M, Maleux K, Gevaert K, Jerzmanowski A, Benhamed M, Wagner D, Vandepoele K, De Jaeger G, Inzé D (2014). ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development.Plant Cell 26, 210-229.
70 Wassom JJ (2013). Quantitative trait loci for leaf angle, leaf width, leaf length, and plant height in a maize (Zea mays L.) B73 × Mo17 population. Maydica 58, 318-321.
71 Wei XM, Wang XB, Guo SL, Zhou JL, Shi Y, Wang HT, Dou DD, Song XH, Li GH, Ku LX, Chen YH (2016). Epistatic and QTL × environment interaction effects on leaf area-associated traits in maize.Plant Breed 135, 671-676.
72 Woo YM, Park HJ, Su’udi M, Yang JI, Park JJ, Back K, Park YM, An G (2007). Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65, 125-136.
73 Wu L, Zhang DF, Xue M, Qian JJ, He Y, Wang SC (2014). Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height.J Integr Plant Biol 56, 1053-1063.
74 Würschum T, Groß-Hardt R, Laux T (2006). APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell 18, 295-307.
75 Yoshikawa T, Eiguchi M, Hibara KI, Ito JI, Nagato Y (2013). Rice SLENDER LEAF 1 gene encodes cellulose synthase-like D4 and is specifically expressed in M-phase cells to regulate cell proliferation. J Exp Bot 64, 2049-2061.
76 Zhang DF, Li B, Jia GQ, Zhang TF, Dai JR, Li JS, Wang SC (2008). Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in Maize (Zea mays L.). Plant Sci 175, 809-817.
77 Zhang GH, Xu Q, Zhu XD, Qian Q, Xue HW (2009). SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development.Plant Cell 21, 719-735.
1 安允权, 张君, 席章营, 李明娜, 李沛, 王顺喜, 张莹莹, 陈彦惠, 吴连成 (2016). 玉米不同叶位叶面积的QTL定位. 分子植物育种 14, 2113-2120.
2 常立国, 何坤辉, 刘建超, 薛吉全 (2016). 不同环境条件下玉米叶夹角的QTL定位. 玉米科学 24(4), 49-55.
3 郭莹 (2012). 利用不同F2群体定位玉米株型性状的QTL. 硕士论文. 重庆: 西南大学. pp. 45-47.
4 鞠培娜, 方云霞, 邹国兴, 彭友林, 孙川, 胡江, 董国军, 曾大力, 郭龙彪, 张光恒, 高振宇, 钱前 (2010). 一个新的水稻叶形突变体(tll1)的遗传分析与精细定位. 植物学报 45, 654-661.
5 李贤唐, 丁俊强, 王瑞霞, 吴建宇 (2011). 玉米株型相关性状的QTL定位与分析. 江苏农业科学 39(2), 21-25.
6 刘建超, 褚群, 蔡红光, 米国华, 陈范骏 (2010). 玉米SSR连锁图谱构建及叶面积的QTL定位. 遗传 32, 625-631.
7 刘正, 余婷婷, 梅秀鹏, 陈淅宁, 王国强, 王久光, 刘朝显, 王旭, 蔡一林 (2014). 玉米穗上叶夹角和叶间距的QTL定位. 农业生物技术学报 22, 177-187.
8 路明, 周芳, 谢传晓, 李明顺, 徐云碧, Warburton M, 张世煌 (2007). 玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析. 遗传 29, 1131-1138.
9 唐登国 (2013). 玉米叶宽和叶长性状的QTL定位与分析. 硕士论文. 雅安: 四川农业大学. pp. 29-43.
10 于永涛, 张吉民, 石云素, 宋燕春, 王天宇, 黎裕 (2006). 利用不同群体对玉米株高和叶片夹角的QTL分析. 玉米科学 14(2), 88-92.
11 袁园园, 王丽, 赵盼盼, 王林嵩 (2016). 棉花类结瘤素MtN21基因家族生物信息学分析. 植物学报 51, 515-524.
12 张姿丽, 蒋锋, 刘鹏飞, 陈青春, 张媛, 王晓明 (2014a). 甜玉米穗位叶面积QTL定位. 湖北农业科学 53, 1502-1505.
13 张姿丽, 刘鹏飞, 蒋锋, 陈青春, 张媛, 王晓明, 王汉宁 (2014b). 基于四交群体的玉米叶夹角和叶向值QTL定位分析. 中国农业大学学报 19(4), 7-16.
14 张志腾 (2015). 玉米叶型相关性状QTL定位与分析. 硕士论文. 雅安: 四川农业大学. pp. 21-23.
15 郑祖平, 黄玉碧, 田孟良, 谭振波 (2007). 不同供氮水平下玉米株型相关性状的QTLs定位和上位性效应分析. 玉米科学 15(2), 14-18.
16 Agrama HAS, Zakaria AG, Said FB, Tuinstra M (1999). Identification of quantitative trait loci for nitrogen use efficiency in maize.Mol Breed 5, 187-195.
17 Cai HG, Chu Q, Yuan LX, Liu JC, Chen XH, Chen FJ, Mi GH, Zhang FS (2012). Identification of quantitative trait loci for leaf area and chlorophyll content in maize ( Zea mays) under low nitrogen and low phosphorus supply. Mol Breed 30, 251-266.
18 Candaele J, Demuynck K, Mosoti D, Beemster GTS, Inzé D, Nelissen H (2014). Differential methylation during maize leaf growth targets developmentally regulated ge- nes.Plant Physiol 164, 1350-1364.
19 Candela H, Johnston R, Gerhold A, Foster T, Hake S (2008). The Milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves. Plant Cell 20, 2073-2087.
20 Darvasi A, Soller M (1997). A simple method to calculate resolving power and confidence interval of QTL map location.Behav Genet 27, 125-132.
21 Debernardi JM, Mecchia MA, Vercruyssen L, Smaczniak C, Kaufmann K, Inze D, Rodriguez RE, Palatnik JF (2014). Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity.Plant J 79, 413-426.
22 Dewitte W, Scofield S, Alcasabas AA, Maughan SC, Menges M, Braun N, Collins C, Nieuwland J, Prinsen E, Sundaresan V, Murray JAH (2007). Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses.Proc Natl Acad Sci USA 104, 14537-14542.
23 Ding ZQ, Lin ZF, Li Q, Wu H, Xiang CY, Wang JF (2015). DNL1, encodes cellulose synthase-like D4, is a major QTL for plant height and leaf width in rice(Oryza sativa L.). Biochem Biophys Res Commun 457, 133-140.
24 Dotto MC, Petsch KA, Aukerman MJ, Beatty M, Hammell M, Timmermans MC (2014). Genome-wide analysis of leaf bladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development. PLoS Genet 10, e1004826.
25 Eloy NB, de Freitas Lima M, Van Damme D, Vanhaeren H, Gonzalez N, de Milde L, Hemerly AS, Beemster GTS, Inzé D, Ferreira PCG (2011). The APC/C subunit 10 plays an essential role in cell proliferation during leaf development. Plant J 68, 351-363.
26 Facette MR, Shen ZX, Björnsdóttir FR, Briggs SP, Smith LG (2013). Parallel proteomic and phosphoproteomic ana- lyses of successive stages of maize leaf development.Plant Cell 25, 2798-2812.
27 Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008). NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genom 279, 499-507.
28 Goffinet B, Gerber S (2000). Quantitative trait loci: a meta- analysis.Genetics 155, 463-473.
29 Guo SL, Ku LX, Qi JS, Tian ZQ, Han T, Zhang LK, Su HH, Ren ZZ, Chen YH (2015). Genetic analysis and major quantitative trait locus mapping of leaf widths at different positions in multiple populations.PLoS One 10, e0119095.
30 Horiguchi G, Ferjani A, Fujikura U, Tsukaya H (2006). Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res 119, 37-42.
31 Hu J, Zhu L, Zeng DL, Gao ZY, Guo LB, Fang YX, Zhang GH, Dong GJ, Yan MX, Liu J, Qian Q (2010). Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol 73, 283-292.
32 Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz Gutiérrez-Nava M, Poethig SR (2006). Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis.Development 133, 2973-2981.
33 Iwakawa H, Iwasaki M, Kojima S, Ueno Y, Soma T, Tanaka H, Semiarti E, Machida Y, Machida C (2007). Expression of the ASYMMETRIC LEAVES 2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. Plant J 51, 173-184.
34 Jun SE, Cho KH, Hwang JY, Abdel-Fattah W, Hammermeister A, Schaffrath R, Bowman JL, Kim GT (2015). Comparative analysis of the conserved functions of Arabidopsis DRL1 and yeast KTI12.Mol Cells 38, 243-250.
35 Kelley DR, Arreola A, Gallagher TL, Gasser CS (2012). ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument deve- lopment and polarity determination in Arabidopsis.Deve- lopment 139, 1105-1109.
36 Kim GT, Tsukaya H, Uchimiya H (1998). The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P450 family that is required for the regulated polar elongation of leaf cells. Genes Dev 12, 2381-2391.
37 Kim JH, Choi D, Kende H (2003). The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis.Plant J 36, 94-104.
38 Ku LX, Zhang J, Guo SL, Liu HY, Zhao RF, Chen YH (2012a). Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.). J Exp Bot 63, 261-274.
39 Ku LX, Zhang J, Zhang JC, Guo SL, Liu HY, Zhao RF, Yan QX, Chen YH (2012b). Genetic dissection of leaf area by jointing two F2:3 populations in maize (Zea mays L.). Plant Breed 131, 591-599.
78 Zhu HL, Hu FQ, Wang RH, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang XR (2011). Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development.Cell 145, 242-256.
40 Ku LX, Zhao WM, Zhang J, Wu LC, Wang CL, Wang PA, Zhang WQ, Chen YH (2010). Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet 121, 951-959.
41 Kubo FC, Yasui Y, Kumamaru T, Sato Y, Hirano HY (2017). Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number.Genes Genet Syst 91, 235-240.
[1] LI Qun, ZHAO Cheng-Zhang, WANG Ji-Wei, WEN Jun, LI Zi-Qin, MA Jun-Yi. Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China [J]. Chin J Plant Ecol, 2019, 43(8): 685-696.
[2] Zhou Chun, Jiao Ran, Hu Ping, Lin Han, Hu Juan, Xu Na, Wu Xianmei, Rao Yuchun, Wang Yuexing. Gene Mapping and Candidate Gene Analysis of Rice Early Senescence Mutant LS-es1 [J]. Chin Bull Bot, 2019, 54(5): 606-619.
[3] YANG Huan-Ying, SONG Jian-Da, ZHOU Tao, JIN Guang-Ze, JIANG Feng, LIU Zhi-Li. Influences of stand, soil and space factors on spatial heterogeneity of leaf area index in a spruce-fir valley forest in Xiao Hinggan Ling, China [J]. Chin J Plant Ecol, 2019, 43(4): 342-351.
[4] GAO Si-Han, GE Yu-Xi, ZHOU Li-Yi, ZHU Bao-Lin, GE Xing-Yu, LI Kai, NI Jian. What is the optimal number of leaves when measuring leaf area of tree species in a forest community? [J]. Chin J Plan Ecolo, 2018, 42(9): 917-925.
[5] Liu Qiang, Cai Erli, Zhang Jialin, Song Qiao, Li Xiuhong, Dou Baocheng. A Modification of the Finite-length Averaging Method in Measuring Leaf Area Index in Field [J]. Chin Bull Bot, 2018, 53(5): 671-685.
[6] ZHANG Xin, XING Ya-Juan, YAN Guo-Yong, WANG Qing-Gui. Response of fine roots to precipitation change: A meta-analysis [J]. Chin J Plan Ecolo, 2018, 42(2): 164-172.
[7] PENG Xi, YAN Wen-De, WANG Feng-Qi, WANG Guang-Jun, YU Fang-Yong, ZHAO Mei-Fang. Specific leaf area estimation model building based on leaf dry matter content of Cunninghamia lanceolata [J]. Chin J Plan Ecolo, 2018, 42(2): 209-219.
[8] Qun LI, Cheng-Zhang ZHAO, Lian-Chun ZHAO, Jian-Liang WANG, Wei-Tao ZHANG, Wen-Xiu YAO. Empirical relationship between specific leaf area and thermal dissipation of Phragmites australis in salt marshes of Qinwangchuan [J]. Chin J Plan Ecolo, 2017, 41(9): 985-994.
[9] Ze-Bin LIU, Yan-Hui WANG, Yu LIU, Ao TIAN, Ya-Rui WANG, Hai-Jun ZUO. Spatiotemporal variation and scale effect of canopy leaf area index of larch plantation on a slope of the semi-humid Liupan Mountains, Ningxia, China [J]. Chin J Plan Ecolo, 2017, 41(7): 749-760.
[10] YANG Qing-Xiao, TIAN Da-Shuan, ZENG Hui, NIU Shu-Li. Main factors driving changes in soil respiration under altering precipitation regimes and the controlling processes [J]. Chin J Plan Ecolo, 2017, 41(12): 1239-1250.
[11] GAO Lin, WANG Xiao-Fei, GU Xing-Fa, TIAN Qing-Jiu, JIAO Jun-Nan, WANG Pei-Yan, LI Dan. Exploring the influence of soil types underneath the canopy in winter wheat leaf area index remote estimating [J]. Chin J Plan Ecolo, 2017, 41(12): 1273-1288.
[12] Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG. Trade-off between leaf size and vein density of Achnatherum splendens in Zhangye wetland [J]. Chin J Plan Ecolo, 2016, 40(8): 788-797.
[13] Jing GAO, Jin-Niu WANG, Bo XU, Yu XIE, Jun-Dong HE, Yan WU. Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow [J]. Chin J Plan Ecolo, 2016, 40(8): 775-787.
[14] Ming ZHOU, Zhi-Li LIU, Guang-Ze JIN. Improving the accuracy of indirect methods in estimating leaf area index using three correction schemes in a Larix gmelinii plantation [J]. Chin J Plan Ecolo, 2016, 40(6): 574-584.
[15] Xinghai Yang, Baoxuan Nong, Xiuzhong Xia, Zongqiong Zhang, Yu Zeng, Kaiqiang Liu, Guofu Deng, Danting Li. Genome-wide Association Study of Genes Related to Waxiness in Oryza sativa [J]. Chin Bull Bot, 2016, 51(6): 737-742.
Full text



[1] Yu Feng-lan;Wang Jing-ping;Li Jing-min and Shan Xue-qin. The Isolation and Identification of Sterols and Other Constituents from Seed Fat of Sapium sebiferum[J]. Chin Bull Bot, 1989, 6(02): 121 -123 .
[2] LI Al-Fen;CHEN Min amd ZHOU Bai-Cheng. Advances and Problems in Studies of Photosynthetic Pigment-Protein Complexes of Brown Algae[J]. Chin Bull Bot, 1999, 16(04): 365 -371 .
[3] CHEN Xiao-Mei and GUO Shun-Xing. Research Advances in Plant Disease Resistive Material[J]. Chin Bull Bot, 1999, 16(06): 658 -664 .
[4] LI Ji-Quan JIN You-Ju SHEN Ying-Bai HONG Rong. The Effect of Environmental Factors on Emission of Volatile Organic Compounds from Plants[J]. Chin Bull Bot, 2001, 18(06): 649 -656 .
[5] . [J]. Chin Bull Bot, 2005, 22(增刊): 157 .
[6] Jianxia Li, Chulan Zhang, Xiaofei Xia, Liangcheng Zhao. Cryo-sectioning Conditions and Histochemistry Comparison with Paraffin Sectioning[J]. Chin Bull Bot, 2013, 48(6): 643 -650 .
[7] JIANG Yang-Ming, CUI Wei-Hong, and DONG Qian-Lin. Comprehensive evaluation and analysis of tobacco planting environment based on space technology[J]. Chin J Plan Ecolo, 2012, 36(1): 47 -54 .
[8] Hu Cheng-biao, Zhu Hong-guang, Wei Yuan-lian. A Study on Microorganism and Biochemical Activity of Chinese-fir Plantation on Different Ecological Area in Guangxi[J]. Chin J Plan Ecolo, 1991, 15(4): 303 -311 .
[9] Hong-Xin SU Fan BAI Guang-Qi LI. Seasonal dynamics in leaf area index in three typical temperate montane forests of China: a comparison of multi-observation methods[J]. Chin J Plan Ecolo, 2012, 36(3): 231 -242 .
[10] AN Ran, GONG Ji-Rui, YOU Xin, GE Zhi-Wei, DUAN Qing-Wei, YAN Xin. Seasonal dynamics of soil microorganisms and soil nutrients in fast-growing Populus plantation forests of different ages in Yili, Xinjiang, China[J]. Chin J Plan Ecolo, 2011, 35(4): 389 -401 .