Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (2): 277-283.doi: 10.11983/CBB18197

;

• SPECIAL TOPICS • Previous Articles    

Research Progress on Pathogenic Characteristics and Resistance of Bacterial Panicle Blight of Rice

Ye Wenlan,Ma Guolan,Yuan liyanan,Zheng Shiyi,Cheng Linqiao,Fang Yuan(),Rao Yuchun()   

  1. College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
  • Received:2018-09-17 Accepted:2018-12-10 Online:2019-09-01 Published:2019-03-01
  • Contact: Fang Yuan,Rao Yuchun E-mail:fy0579@zjnu.cn;ryc@zjnu.cn

Abstract:

Bacterial panicle blight of rice (BPBR) is one of the most important diseases of rice; it seriously threatens the high and stable yield of rice in the world. Although the disease is still listed as a quarantine disease in China, recent studies have shown that BPBR can spread at any time. Therefore, in addition to strengthening quarantine work, targeted control technology research is needed. During the process of infection, Burkholderia glumae has evolved multiple virulence factors. However, at the same time, rice has evolved a variety of defense mechanisms during the long-term interaction between rice and pathogens. Resistance genes are one of the main defense mechanisms. Therefore, mining the resistance locus of BPBR on the rice genome and breeding resistant varieties is the safest and most effective way to control the disease. To provide references for excavation and separation resistance sites, this paper reviews the pathogenic characteristics, pathogenesis, disease cycle and rice resistance to BPBR.

Key words: rice, bacterial panicle blight, Burkholderia glumae, resistance

Figure 1

Disease cycle of bacterial panicle blight of rice "

[1] 李春宏, 付三雄, 戚存扣 ( 2014). 应用基因芯片分析甘蓝型油菜柱头特异表达基因. 植物学报 49, 246-253.
[2] 李路, 刘连盟, 王国荣, 汪爱娟, 王玲, 孙磊, 黎起秦, 黄世文 ( 2015). 水稻穗腐病和穗枯病的研究进展. 中国水稻科学 29, 215-222.
[3] 李路, 徐以华, 梁梦琦, 王玲, 刘连盟, 侯雨萱, 黎起秦, 黄世文 ( 2017). 水稻对穗枯病的抗病机理初步研究. 中国水稻科学 31, 551-558.
[4] 龙海, 李芳荣, 冯建军, 李一农 ( 2015). 水稻细菌性谷枯病研究进展. 中国植保导刊 35(7), 73-78.
[5] 罗金燕 ( 2007). 水稻细菌性谷枯病菌的风险分析、鉴定检测及其拮抗细菌的研究. 博士论文. 杭州: 浙江大学. pp. 2-85.
[6] 罗金燕, 谢关林, 李斌 ( 2003). 水稻细菌性谷枯病的生物学特征及其检疫意义. 植物检疫 17, 243-245.
[7] 罗金燕, 徐福寿, 王平, 徐丽慧, 谢关林 ( 2008). 水稻细菌性谷枯病病原菌的分离鉴定. 中国水稻科学 22, 82-86.
[8] 谢关林, 罗金燕, 李斌 ( 2003). 水稻危险性病害——细菌性谷枯病及其病原鉴别. 植物保护 29(5), 47-49.
[9] 徐丽慧 ( 2008). 水稻细菌性谷枯病菌的分子检测及细菌性褐条病病原鉴定研究. 硕士论文. 杭州: 浙江大学. pp. 3.
[10] 朱金国, 莫瑾, 朱水芳, 赵文军, 彭梓, 刘红霞, 钟文英 ( 2010). 利用双重PCR-DHPLC技术检测水稻细菌性谷枯病菌的研究. 植物病理学报 40, 449-455.
[11] Boekema BKL, Beselin A, Breuer M, Hauer B, Koster M, Rosenau F, Jaeger KE, Tommassen J ( 2007). Hexa- decane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Appl Environ Microbiol 73, 3838-3844.
[12] Chun H, Choi O, Goo E, Kim N, Kim H, Kang Y, Kim J, Moon JS, Hwang I ( 2009). The quorum sensing dependent gene katG of Burkholderia glumae is important for protection from visible light. J Bacteriol 191, 4152-4157.
[13] Cui ZQ, Zhu B, Xie GL, Li B, Huang SW ( 2016). Research status and prospect of Burkholderia glumae , the pathogen causing bacterial panicle blight. Rice Sci 23, 111-118.
[14] Daniels R, Vanderleyden J, Michiels J ( 2004). Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28, 261-289.
doi: 10.1016/j.femsre.2003.09.004
[15] Davey ME, O’Toole GA ( 2000). Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol 64, 847-867.
doi: 10.1128/MMBR.64.4.847-867.2000
[16] Devescovi G, Bigirimana J, Degrassi G, Cabrio L, LiPuma JJ, Kim J, Hwang I, Venturi V ( 2007). Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Appl Environ Microbiol 73, 4950-4958.
[17] Francis F, Kim J, Ramaraj T, Farmer A, Rush MC, Ham JH ( 2013). Comparative genomic analysis of two Burkholderia glumae strains from different geographic origins reveals a high degree of plasticity in genome structure associated with genomic islands. Mol Genet Genomics 288, 195-203.
[18] Frenken LGJ, Bos JW, Visser C, Müller W, Tommassen J, Verrips CT ( 1993). An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase. Mol Microbiol 9, 579-589.
[19] Goto K, Ohata K ( 1956). New bacterial diseases of rice (brown stripe and grain rot). Ann Phytopathol Soc Jpn 21, 46-47.
[20] Ham JH, Melanson RA, Rush MC ( 2011). Burkholderia glumae: next major pathogen of rice? Mol Plant Pathol 12, 329-339.
[21] Hikichi Y, Noda C, Shimizu K ( 1989). Oxolic acid. Jpn Pestic Infect 55, 21-23.
[22] Jang MS, Goo E, An JH, Kim J, Hwang I ( 2014). Quorum sensing controls flagellar morphogenesis in Burkholderia glumae . PLoS One 9, e84831.
[23] Jeong Y, Kim J, Kim S, Kang Y, Nagamatsu T, Hwang I ( 2003). Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis 87, 890-895.
[24] Kang Y, Kim J, Kim S, Kim H, Lim JY, Kim M, Kwak J, Moon JS, Hwang I ( 2008). Proteomic analysis of the proteins regulated by HrpB from the plant pathogenic bacterium Burkholderia glumae. Proteomics 8, 106-121.
doi: 10.1002/(ISSN)1615-9861
[25] Kawaradani M, Okada K, Kusakari S ( 2000). New selective medium for isolation of Burkholderia glumae from rice seeds. J Gen Plant Pathol 66, 234-237.
[26] Kim S, Park J, Kim JH, Lee J, Bang B, Hwang I, Seo YS ( 2013). RNAseq-based transcriptome analysis of Burk- holderia glumae quorum sensing. Plant Pathol J 29, 249-259.
[27] Kim S, Park J, Lee J, Shin D, Park DS, Lim JS, Choi IY, Seo YS ( 2014). Understanding pathogenic Burkholderia glumae metabolic and signaling pathways within rice tissues through in vivo transcriptome analyses. Gene 547, 77-85.
[28] Lim J, Lee TH, Nahm BH, Choi YD, Kim M, Hwang I ( 2009). Complete genome sequence of Burkholderia glumae BGR1 . J Bacteriol 191, 3758-3759.
[29] Maeda Y, Kiba A, Ohnishi K, Hikichi Y ( 2004). New method to detect oxolinic acid-resistant Burkholderia glumae infesting rice seeds using a mismatch amplification mutation assay polymerase chain reaction. J Gen Plant Pathol 70, 215-217.
[30] Magbanua ZV, Arick M 2nd, Buza T, Hsu CY, Showmaker KC, Chouvarine P, Deng P, Peterson DG, Lu S ( 2014). Transcriptomic dissection of the rice- Burkholderia glumae interaction. BMC Genomics 15, 755.
[31] Melanson RA, Barphagha I, Osti S, Lelis TP, Karki HS, Chen RX, Shrestha BK, Ham JH ( 2017). Identification of new regulatory genes involved in the pathogenic functions of the rice-pathogenic bacterium Burkholderia glumae . Mi- crobiology 163, 266-279.
[32] Mizobuchi R, Sato H, Fukuoka S, Tanabata T, Tsushima S, Imbe T, Yano M ( 2013a). Mapping a quantitative trait locus for resistance to bacterial grain rot in rice. Rice 6, 13.
doi: 10.1186/1939-8433-6-13
[33] Mizobuchi R, Sato H, Fukuoka S, Tsushima S, Imbe T, Yano M ( 2013b). Identification of qRBS1 , a QTL involved in resistance to bacterial seedling rot in rice. Theor Appl Genet 126, 2417-2425.
[34] Mizobuchi R, Sato H, Fukuoka S, Tsushima S, Yano M ( 2015). Fine mapping of RBG2, a quantitative trait locus for resistance to Burkholderia glumae, on rice chromosome 1. Mol Breed 35, 15.
[35] Nandakumar R, Rush MC ( 2008). Analysis of gene expression in Jupiter rice showing partial resistance to rice panicle blight caused by Burkholderia glumae . Phytopathology 98, 112.
[36] Nickzad A, Lépine F, Déziel E ( 2015). Quorum sensing controls swarming motility of Burkholderia glumae through regulation of rhamnolipids. PLoS One 10, e0128509.
[37] Pinson SRM, Shahjahan AKM, Rush MC, Groth DE ( 2010). Bacterial panicle blight resistance QTLs in rice and their association with other disease resistance loci and heading date. Crop Sci 50, 1287-1297.
doi: 10.2135/cropsci2008.07.0447
[38] Sha X, Linscombe SD, Groth DE, Bond JA, White LM, Utomo HS, Dunand RT ( 2006). Registration of ‘Jupiter’ rice. Crop Sci 46, 1811-1812.
doi: 10.2135/cropsci2005.08-0265
[39] Suzuki F, Sawada H, Azegami K, Tsuchiya K ( 2004). Molecular characterization of the tox operon involved in toxoflavin biosynthesis of Burkholderia glumae. J Gen Plant Pathol 70, 97-107.
[40] Trung HM, Van NV, Vien NV, Lam DT, Lien M ( 1993). Occurrence of rice grain rot disease in Vietnam. Int Rice Res Notes 18, 30.
[41] Tsushima S, Mogi S, Naito H, Saito H ( 1989). Existence of Pseudomonas glumae on the rice seeds and development of the simple method for detecting P. glumae from the rice seeds. Bull Kyushu Natl Agric Exp Stn 25, 261-270.
[42] Tsushima S, Wakimoto S, Mogi S ( 1986). Selective medium for detecting Pseudomonas glumae Kurita et Tabei, the causal bacterium of grain rot of rice. Jpn J Phytopathol 52, 253-259.
[1] . A New Progress of Green Revolution: Epigenetic Modification Dual-regulated by Gibberellin and Nitrogen Supply Contributes to Breeding of High Yield and Nitrogen Use Efficiency Rice [J]. Chin Bull Bot, 2020, 55(1): 0-0.
[2] Zhang Tong,Guo Yalu,Chen Yue,Ma Jinjiao,Lan Jinping,Yan Gaowei,Liu Yuqing,Xu Shan,Li Liyun,Liu Guozhen,Dou Shijuan. Expression Characterization of Rice OsPR10A and Its Function in Response to Drought Stress [J]. Chin Bull Bot, 2019, 54(6): 711-722.
[3] Zhang Na,Liu Xiuxia,Chen Xuesen,Wu Shujing. Identifying Genes Responsive to Jasmonates in Apple Based on Transcriptome Analysis [J]. Chin Bull Bot, 2019, 54(6): 733-743.
[4] Tian Huaidong, Li Jing, Tian Baohua, Niu Pengfei, Li Zhen, Yue Zhongxiao, Qu Yajuan, Jiang Jianfang, Wang Guangyuan, Cen Huihui, Li Nan, Yan Feng. Method for N-methyl-N-nitrosourea Mutagenesis on Hermaphroditic Germ Cells of Rice [J]. Chin Bull Bot, 2019, 54(5): 625-633.
[5] Zhou Chun, Jiao Ran, Hu Ping, Lin Han, Hu Juan, Xu Na, Wu Xianmei, Rao Yuchun, Wang Yuexing. Gene Mapping and Candidate Gene Analysis of Rice Early Senescence Mutant LS-es1 [J]. Chin Bull Bot, 2019, 54(5): 606-619.
[6] Zhang Shuo, Wu Changyin. Long Noncoding RNA Ef-cd Promotes Maturity Without Yield Penalty in Rice [J]. Chin Bull Bot, 2019, 54(5): 550-553.
[7] Li Weitao, He Min, Chen Xuewei. Discovery of ZmFBL41 Chang7-2 as A Key Weapon against Banded Leaf and Sheath Blight Resistance in Maize [J]. Chin Bull Bot, 2019, 54(5): 547-549.
[8] Cheng Xinjie, Yu Hengxiu, Cheng Zhukuan. Protocols for Analyzing Rice Meiotic Chromosomes [J]. Chin Bull Bot, 2019, 54(4): 503-508.
[9] Liu Dongfeng, Tang Yongyan, Luo Shengtao, Luo Wei, Li Zhitao, Chong Kang, Xu Yunyuan. Identification of Chilling Tolerance of Rice Seedlings by Cold Water Bath [J]. Chin Bull Bot, 2019, 54(4): 509-514.
[10] Liu Jin, Yao Xiaoyun, Yu Liqin, Li Hui, Zhou Huiying, Wang Jiayu, Li Maomao. Detection and Analysis of Dynamic Quantitative Trait Loci at Three Years for Seed Storability in Rice (Oryza sativa) [J]. Chin Bull Bot, 2019, 54(4): 464-473.
[11] Wang Xiaolin,Wang Ertao. NRT1.1B Connects Root Microbiota and Nitrogen Use in Rice [J]. Chin Bull Bot, 2019, 54(3): 285-287.
[12] Li Lulu, Yin Wenchao, Niu Mei, Meng Wenjing, Zhang Xiaoxing, Tong Hongning. Functional Analysis of Brassinosteroids in Salt Stress Responses in Rice [J]. Chin Bull Bot, 2019, 54(2): 185-193.
[13] Chen Lin,Lin Yan,Chen Pengfei,Wang Shaohua,Ding Yanfeng. Effect of Iron Deficiency on the Protein Profile of Rice (Oryza sativa) Phloem Sap [J]. Chin Bull Bot, 2019, 54(2): 194-207.
[14] Gao Huaifeng,Zhang Yafei,Wang Guodong,Sun Xiwu,He Yue,Peng Futian,Xiao Yuansong. The Effect of Molybdenum on Drought Stress Response in Peach [J]. Chin Bull Bot, 2019, 54(2): 227-236.
[15] Yang Dewei,Wang Mo,Han Libo,Tang Dingzhong,Li Shengping. Progress of Cloning and Breeding Application of Blast Resistance Genes in Rice and Avirulence Genes in Blast Fungi [J]. Chin Bull Bot, 2019, 54(2): 265-276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] TIAN Bao-Lin WANG Shi-Jun LI Cheng-Sen CHEN Gui-Ren. An Approach on the Origin Center, Evolution Center and the Mechanics of Evolution and Extinction of the Late Palaeozoic Cathaysian Flora[J]. Chin Bull Bot, 2000, 17(专辑): 21 -33 .
[6] ZHANG Yan FANG Li LI Tian-Fei YAO Zhao-BingJIANG Jin-Hui. Effect of Calcium on the Heat Tolerance and Active Oxygen Metabolism of Tobacco Leaves[J]. Chin Bull Bot, 2002, 19(06): 721 -726 .
[7] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[8] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[9] Dapeng Li;Min Zhang;Qian Gao;Yong Hu;Yikun He*. An Emerging Picture of Plastid Division in Higher Plants[J]. Chin Bull Bot, 2009, 44(01): 43 -51 .
[10] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .