Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (2): 227-236.doi: 10.11983/CBB18142

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

The Effect of Molybdenum on Drought Stress Response in Peach

Gao Huaifeng,Zhang Yafei,Wang Guodong,Sun Xiwu,He Yue,Peng Futian(),Xiao Yuansong()   

  1. State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
  • Received:2018-06-19 Accepted:2018-11-16 Online:2019-09-01 Published:2019-03-01
  • Contact: Peng Futian,Xiao Yuansong E-mail:pft@sdau.edu.cn;ysxiao@sdau.edu.cn

Abstract:

Peach (Amygdalus persica) seedlings were used to analyze the effect of ammonium molybdate on the expression of molybdenum cofactor sulfurase gene (LOS5/ABA3), ABA content and physiological indexes related to drought resistance under drought stress. Water, chlorophyll and proline contents of peach seedling leaves were significantly higher with ammonium molybdate, preferably 0.04%, than control treatment, and electrolyte leakage was lower. Under drought stress, the expression of LOS5/ABA3 in leaves treated with 0.04% ammonium molybdate was significantly increased and ABA content, water use efficiency, and net photosynthetic rate was higher than with control treatment. Transpiration rate was lower, antioxidant enzyme activity was higher, and malondialdehyde content was lower in leaves; the quality loss of leaves in vitro was reduced. Thus, ammonium molybdate treatment of peach seedlings can increase the content of ABA and proline, increase the activity of antioxidant enzymes, relieve cell membrane oxidation damage, decrease the rate of water loss of leaves, and alleviate drought stress damage by regulating the expression of drought- resistant genes, then increase the drought resistance of plants.

Key words: peach seedlings, ammonium molybdate, drought stress, LOS5/ABA3, drought resistance

Table 1

Primers used in this study"

Primer name Primer (5′→3′)
PpABA3-F CAATGGTACTGCAGCATCTATGA
PpABA3-R TAAGTTATATGCCTCTCCTGTTGG
PpACTIN-F TGCATTGTGTATGTGTTCATCTACA
PpACTIN-R CTTCACCATTCCAGTTCCATTGTC

Figure 1

Water content (A) and electrolyte leakage (B) of peach seedlings treated with different concentrations of ammonium molybdate under drought stress Different lowercase letters above the bars indicate significant differences at 0.05 level."

Figure 2

Chlorophyll (A) and proline (B) content of peach seedlings treated with different concentrations of ammonium molybdate under drought stressDifferent lowercase letters above the bars indicate significant differences at 0.05 level."

Figure 3

The SPAD (A), net photosynthetic rate (B), transportation rate (C) and water use efficiency (D) of peach seedlings treated with ammonium molybdate under drought stress Different lowercase letters above the bars indicate significant differences at 0.05 level."

Figure 4

The changes of the quality percentage of detached leaves of peach CK: Normal conditions+water; T1: Normal conditions+0.04% ammonium molybdate; T2: Medium drought stress+water; T3: Medium drought stress+0.04% ammonium molybdate; T4: Severe drought stress+water; T5: Severe drought stress+ 0.04% ammonium molybdate. Different lowercase letters above the bars indicate significant differences at 0.05 level."

Figure 5

The effect of ammonium molybdate on the MDA content (A) and the activity of CAT (B), POD (C) and SOD (D) of peach seedlingsMDA: Malondialdehyde; CAT: Catalase; POD: Peroxidase; SOD: Superoxide dismutase. Different lowercase letters above the bars indicate significant differences at 0.05 level."

Figure 6

ABA content of peach seedlings treated with ammonium molybdate under drought stress Different lowercase letters above the bars indicate significant differences at 0.05 level."

Figure 7

The expression of LOS5/ABA3 in leaves of peach seedlings under different drought stresses(A) Normal conditions; (B) Medium drought stress; (C) Severe drought stress. Different lowercase letters above the bars indicate significant differences at 0.05 level."

[1] 李洁, 列志旸, 薛立, 黄威龙, 许建新 ( 2016). 干旱胁迫对3种园林绿化树种幼苗生理指标的影响. 西南林业大学学报 36(2), 56-61.
[2] 邵惠芳, 陈征, 许嘉阳, 范艺宽, 黄五星, 张海枞, 许自成 ( 2016). 两种烟草幼苗叶片对不同强度干旱胁迫的生理响应比较. 植物生理学报 52, 1861-1871.
[3] 宋哲, 章家长, 楮庆全, 李召虎 ( 2008). 转LOS5/ABA3基因早熟禾(P. pratensis L.)的获得及抗旱和抗寒性分析. 中国科技论文在线. .
[4] 苏金, 朱汝财 ( 2001). 渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响. 植物学通报 18, 129-136.
[5] 孙学成 ( 2006). 钼提高冬小麦抗寒力的生理基础及分子机制. 博士论文. 武汉: 华中农业大学.
[6] 王华, 王飞, 陈登文, 丁勤 ( 2000). 低温胁迫对杏花SOD活性和膜脂过氧化的影响. 果树科学 17, 197-201.
[7] 王尉, 乐胜峰, 贺天雨, 杜宁, 林楠 ( 2018). 高效液相色谱法测定苜蓿中脱落酸的含量. 分析仪器 53(2), 53-57.
[8] 吴明才, 肖昌珍 ( 1994). 大豆钼素研究. 大豆科学 13, 245-251.
[9] 武松伟, 胡承孝, 谭启玲, 孙学成 ( 2016). 钼与植物抗寒性研究进展. 湖北农业科学 55, 13-16, 42.
[10] 张士功, 刘国栋, 刘更另 ( 2001). 植物营养与作物抗旱性. 植物学通报 18, 64-69, 63.
[11] 张志良, 瞿伟菁, 李小方 ( 2009). 植物生理学实验指导(第4版). 北京: 高等教育出版社. pp. 4-5.
[12] 赵世杰, 史国安, 董新纯 ( 2002). 植物生理学实验指导. 北京: 中国农业科学技术出版社. pp. 164-165.
[13] Atwal PS, Scaglia F ( 2016). Molybdenum cofactor deficiency. Mol Genet Metab 117, 1-4.
doi: 10.1016/j.ymgme.2015.11.010
[14] Barker R, Dawe D, Tuong TP, Bhuiyan SI, Guerra LC ( 1998). The outlook for water resources in the Year 2020: challenges for research on water management in rice production. International Rice Commission Newsletter 49, 7-21.
[15] Garbero M, Pedranzani H, Zirulnik F, Molina A, Pérez- Chaca MV, Vigliocco A, Abdala G ( 2011). Short-term cold stress in two cultivars of Digitaria eriantha : effects on stress-related hormones and antioxidant defense system. Acta Physiol Plant 33, 497-507.
[16] Hanks RJ ( 1983). Yield and water-use relationships: an overview. In: Taylor HM, Jordan WR, Sinclair TR, eds. Limitations to Efficient Water Use in Crop Production. Ma- dison: American Society of Agronomy. pp. 393-411.
[17] Hille R, Hall J, Basu P ( 2014). The mononuclear molybdenum enzymes. Chem Rev 114, 3963-4038.
doi: 10.1021/cr400443z
[18] Li YJ, Zhang JC, Zhang J, Hao L, Hua JP, Duan LS, Zhang MC, Li ZH ( 2013). Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnol J 11, 747-758.
doi: 10.1111/pbi.12066
[19] Lu Y, Li YJ, Zhang JC, Xiao YT, Yue YS, Duan LS, Zhang MC, Li ZH ( 2013). Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize ( Zea mays L.). PLoS One 8, e52126.
[20] Ma FF, Lu R, Liu HY, Shi B, Zhang JH, Tan MP, Zhang AY, Jiang MY ( 2012). Nitric oxide-activated calcium/calmo- dulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J Exp Bot 63, 4835-4847.
doi: 10.1093/jxb/ers161
[21] Mahajan S, Tuteja N ( 2005). Cold, salinity and drought stres- ses: an overview. Arch Biochem Biophys 444, 139-158.
doi: 10.1016/j.abb.2005.10.018
[22] Patnaitk D, Khurana P ( 2002). Wheat biotechnology: a minireview. Electron J Biotechnol 4, 74-102.
[23] Sun XC, Hu CX, Tan QL, Liu JS, Liu HE ( 2009). Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress. Ann Bot 104, 345-356.
doi: 10.1093/aob/mcp133
[24] Wilkinson S, Davies WJ ( 2002). ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Environ 25, 195-210.
doi: 10.1046/j.0016-8025.2001.00824.x
[25] Wu SW, Hu CX, Tan QL, Nie ZJ, Sun XC ( 2014). Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress. Plant Physiol Biochem 83, 365-374.
[26] Xiong LM, Ishitani M, Lee H, Zhu JK ( 2001). The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cof- actor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13, 2063-2084.
[27] Xiong LM, Zhu JK ( 2001). Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant 112, 152-166.
doi: 10.1034/j.1399-3054.2001.1120202.x
[28] Yue SY, Ming CZ, Zhang JC, Tian XL, Duan LS, Li ZH ( 2012). Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63, 3741-3748.
[29] Yue YS, Zhang MC, Zhang JC, Duan LS, Li ZH ( 2011). Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco( Nicotiana tabacum cv. ‘Xanthi-nc’) results in enhanced drought tolerance. Plant Sci 181, 405-411.
[30] Zhang M, Hu CX, Zhao XH, Tan QL, Sun XC, Cao AY, Cui M, Zhang Y ( 2012). Molybdenum improves antioxidant and osmotic-adjustment ability against salt stress in Chinese cabbage ( Brassica campestris L. ssp. pekinensis). Plant Soil 355, 375-383.
[31] Zhu JK ( 2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53, 247-273.
doi: 10.1146/annurev.arplant.53.091401.143329
[1] XU Li-Jiao, HAO Zhi-Peng, XIE Wei, LI Fang, CHEN Bao-Dong. Transmembrane H + and Ca 2+ fluxes through extraradical hyphae of arbuscular mycorrhizal fungi in response to drought stress [J]. Chin J Plan Ecolo, 2018, 42(7): 764-773.
[2] Xi WANG,Hong-Ling HU,Ting-Xing HU,Cheng-Hao ZHANG,Xin WANG,Dan LIU. Effects of drought stress on the osmotic adjustment and active oxygen metabolism of Phoebe zhennan seedlings and its alleviation by nitrogen application [J]. Chin J Plan Ecolo, 2018, 42(2): 240-251.
[3] Dan-Dan LUO, Chuan-Kuan WANG, Ying JIN. Plant water-regulation strategies: Isohydric versus anisohydric behavior [J]. Chin J Plan Ecolo, 2017, 41(9): 1020-1032.
[4] Yu CEN, Mei-Zhen LIU. Effects of dew on eco-physiological traits and leaf structures of Leymus chinensis and Agropyron cristatum grown under drought stress [J]. Chin J Plan Ecolo, 2017, 41(11): 1199-1207.
[5] Rui GUO, Ji ZHOU, Fan YANG, Feng LI, Hao-Ru LI, Xu XIA, Qi LIU. Growth metabolism of wheat under drought stress at the jointing-booting stage [J]. Chin J Plan Ecolo, 2016, 40(12): 1319-1327.
[6] Haitao Long, Limei Li, Zehong Xie, Shuai Liu, Xiaoyun Li, Bin Deng, Haiyan Liu, Ling Li. Relationship Between Drought Resistance Evaluated by Comprehensive Subordinate Function Values and AhNCED1 Expression in Peanut Varieties [J]. Chin Bull Bot, 2015, 50(6): 706-712.
[7] AN Dong-Sheng,CAO Juan,HUANG Xiao-Hua,ZHOU Juan,DOU Mei-An. Application of Lake-model based indices from chlorophyll fluorescence on sugarcane seedling drought resistance study [J]. Chin J Plan Ecolo, 2015, 39(4): 398-406.
[8] Xiaolong Liu, Xia Li, Baoyun Qian. Photosynthetic and Physiological Regulation of C4 Phosphoenol- pyruvate Carboxylase Transgenic Rice (Oryza sativa) by Exogenous Ca2+ Under Polyethylene Glycol Stress [J]. Chin Bull Bot, 2015, 50(2): 206-216.
[9] LI Guang-Hui, WAN Yong-Shan, LIU Feng-Zhen, and ZHANG Kun. Photosynthetic characteristics in different peanut cultivars under conditions of drought and re-watering at seedling stage [J]. Chin J Plan Ecolo, 2014, 38(7): 729-739.
[10] QIU Quan, PAN Xin, LI Ji-Yue, WANG Jun-Hui, MA Jian-Wei, and DU Kun. Morphological traits and physiological characteristics in drought tolerance in 20 shrub species on the Qinghai-Xizang Plateau [J]. Chin J Plan Ecolo, 2014, 38(6): 562-575.
[11] Hongxia Miao, Yuan Wang, Biyu Xu, Juhua Liu, Caihong Jia, Jianbin Zhang, Zhuo Wang, Peiguang Sun, Zhiqiang Jin. The Role of Banana MaASR1 in Drought Stress Tolerance [J]. Chin Bull Bot, 2014, 49(5): 548-559.
[12] Peiya Wang, Jianping Zhou, Zhiye Wang, Jun Zhang, Weiya Qiang, Tao Yang, Qi Guo, Hui Yang. Effect of the Brassinosteroid Biosynthetic Enzyme DAS5 on Growth and Drought Resistance in Poplar [J]. Chin Bull Bot, 2014, 49(4): 407-416.
[13] LIU Fang, ZUO Zhao-Jiang, XU Gai-Ping, WU Xing-Bo, ZHENG Jie, GAO Rong-Fu, ZHANG Ru-Min, and GAO Yan. Physiological responses to drought stress and the emission of induced volatile organic compounds in Rosmarinus officinalis [J]. Chin J Plan Ecolo, 2013, 37(5): 454-463.
[14] LIU Hua-Wei, LIN Xiao-Jun, SUN Chao, LI Qiang, YANG Hu, GUO Ai-Guang. Inoculation two azotobacter enhancing osmotic stress resistance and growth in wheat seedling [J]. Chin J Plan Ecolo, 2013, 37(1): 70-79.
[15] Fenglian Xu, Jiaojiao Li, Chunhui Du, Na Wang, Suqiao Zhang. OsSRL, a Receptor-like Kinase with S-locus Site, Is Involved in Drought Tolerance in Rice [J]. Chin Bull Bot, 2012, 47(5): 474-482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Dong-Yao Gao, Zhao-Shi Xu, Yi He, Yong-Wei Sun, You-Zhi Ma, and Lan-Qin Xia. Functional analyses of an E3 ligase gene AIP2 from wheat in Arabidopsis revealed its roles in seed germination and pre-harvest sprouting[J]. J Integr Plant Biol, 2014, 56(5): 480 -491 .
[2] . [J]. Chin J Plan Ecolo, 2007, 31(3): 548 .
[3] Li Wenzheng. A NEW SPECIES OF MELIENTHA (A NEW RECORDED GENUS OF OPILIACEAE FROM CHINA)[J]. Plant Diversity, 1989, 11(04): 1 -3 .
[4] Huang Jian. [J]. Chin J Plan Ecolo, 1992, 16(3): 292 .
[5] Ruili Zhang, Yin Jia, Qixiang Zhang. Phenotypic variation of natural populations of Primula denticulata ssp. sinodenticulata[J]. Biodiv Sci, 2008, 16(4): 362 -368 .
[6] Hao-qin Xiong. Soil nutrient patchiness affects nutrient use efficiency, though not photosynthesis and growth of parental Glechoma longituba ramets: both patch contrast and direction matter[J]. J Plant Ecol, 2010, 3(2): 131 -137 .
[7] GAO Lian-Ming, LI De-Zhu, ZHANG Chang-Qin. Phylogenetic relationships of Rhododendron section Azaleastrum(Ericaceae) based on ITS sequences[J]. J Syst Evol, 2003, 41(2): 173 -179 .
[8] Xu Ji. The Protective Protein of Nitrogenase Against Oxygen Damage-Fe-S Protein[J]. Chin Bull Bot, 1986, 4(12): 1 -4 .
[9] WANG Feng-Ying-, HU Yong-Hong-, TIAN Qi. Study on Coldresistance of Island Plant Cinnamomum japonicum (Lauraceae)[J]. Plant Diversity, 2010, 32(S17): 97 .
[10] Cheng Xue, Fang-Dong Geng, Xiao-Yan Zhang, Xiao-Peng Chang, Ju-Qing Kang, Lei Huang, Jian-Qiang Zhang, and Yi Ren. Morphological Variation Pattern of Aquilegia ecalcarata and its Relatives[J]. J Syst Evol, 0, (): 0 .