植物学报 ›› 2015, Vol. 50 ›› Issue (2): 171-179.doi: 10.3724/SP.J.1259.2015.00171

• 研究报告 • 上一篇    下一篇

小立碗藓对重金属镉胁迫的应答特征

伍自力1,2, 余孟瑶2, 陈露2, 魏静2, 王晓琴3, 胡勇2, 闫妍2, 万平2,*()   

  1. 1宜宾学院生命科学与食品工程学院, 香料植物资源开发与利用四川省高校重点实验室, 宜宾 644000
    2首都师范大学植物资源与低碳环境北京市重点实验室, 北京 100048
    3北京农学院农业部都市农业(北方)重点实验室, 北京 102206
  • 收稿日期:2014-10-27 接受日期:2015-02-02 出版日期:2015-03-01 发布日期:2015-04-10
  • 通讯作者: 万平 E-mail:wanping@mail.cnu.edu.cn
  • 作者简介:

    ? 共同第一作者

  • 基金资助:
    转基因生物新品种培育重大专项(No.2013ZX08001003-008)和首都师范大学植物学国家重点学科

Transcriptome Analysis of Physcomitrella patens Response to Cadmium Stress by Bayesian Network

Zili Wu1, 2, Mengyao Yu2, Lu Chen2, Jing Wei2, Xiaoqin Wang3, Yong Hu2, Yan Yan2, Ping Wan2, *   

  1. 1Key Laboratory of Aromatic Plant Resources Exploitation and Utilization in Sichuan Higher Education, College of Life Sciences and Food Engineering, Yibin University, Yibin 644000, China
    2Beijing Key Laboratory of Plant Gene Resource and Low-carbon Environmental Biotechnology, Capital Normal University, Beijing 100048, China
    3Key Laboratory of Urban Agriculture (North) Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China
  • Received:2014-10-27 Accepted:2015-02-02 Online:2015-03-01 Published:2015-04-10
  • Contact: Wan Ping E-mail:wanping@mail.cnu.edu.cn
  • About author:

    ? These authors contributed equally to this paper

摘要:

镉是植物非必需的微量重金属元素, 镉胁迫引起植物细胞的代谢紊乱, 甚至导致细胞死亡。为了探索苔藓植物对镉胁迫的应答机制, 采用高通量测序及生物信息学技术分析了藓类模式植物——小立碗藓(Physcomitrella patens)在镉胁迫下的基因表达特征。结果表明, 在镉胁迫下, 小立碗藓细胞骨架组织、微管运动、DNA修复系统、端粒维护、配子体形成与有性生殖以及与氮代谢等相关基因的表达具有明显的镉胁迫应答特征, 暗示了这些基因可能共同参与小立碗藓对镉胁迫的调控反应。该研究结果为阐明植物对镉胁迫的应答机制提供了新的线索。

Abstract:

Cadmium is a non-essential heavy metal for plant growth. Cadmium stress causes cell metabolism disturbance or death in plant. Here, we performed transcriptome analysis of Physcomitrella patens during cadmium stress by RNA-Seq. We revealed a new transcriptional network of cadmium stress in plants. The functions of genes that were upregulated or downregulated under cadmium stress included microtubule-based movement, microtubule-based processing, cytoskeleton organization, DNA replication, DNA metabolic process, telomere maintenance and organization, sexual reproduction, urea metabolic process, and nitrogen cycle metabolic process. These proteins may play roles in P. patens under cadmium stress. Our study provides new information for the further research of the molecular mechanisms of plant adaptation to cadmium stress.

图1

镉胁迫对小立碗藓生长发育的影响"

Figure 2

小立碗藓镉胁迫基因调控网络 该网络包含704个节点(基因), 788条边(调控关系)。图中红色节点的连接度为13"

图3

小立碗藓镉胁迫基因调控网络节点连接度分布"

表1

小立碗藓镉胁迫基因调控网络中被富集的GO条目"

Type GO number Biological processes P value
1 GO:0007018 Microtubule-based movement 2.80E-06
GO:0007017 Microtubule-based process 6.90E-05
GO:0007010 Cytoskeleton organization 0.018 8
2 GO:0006260 DNA replication 0.001 7
GO:0006259 DNA metabolic process 0.002 5
GO:0006302 Double-strand break repair 0.015 3
GO:0000723 Telomere maintenance 0.033 4
GO:0032200 Telomere organization 0.033 4
3 GO:0007276 Gamete generation 0.033 4
GO:0007292 Female gamete generation 0.033 4
GO:0019953 Sexual reproduction 0.033 4
4 GO:0019627 Urea metabolic process 0.033 4
GO:0071941 Nitrogen cycle metabolic process 0.033 4

图4

镉胁迫应答基因的表达"

表2

用于qPCR检测的10个基因"

Gene identification
number
The homologous gene in
Arabidopsis thaliana
Function
Pp1s34_49V6 AT2G27290.1 Protein of unknown function (DUF1279)
Pp1s352_53V6 AT3G57060.2 Chromosome condensation
Pp1s59_160V6 AT3G44750.1 Histone deacetylase 3
Pp1s57_179V6 AT5G18140.1 Chaperone DnaJ-domain superfamily protein
Pp1s204_5V6 AT5G20935.1 Protein of unknown function
Pp1s68_291V6 AT5G57590.1 Adenosylmethionine-8-amino-7-oxononanoate transaminases
Pp1s13_454V6 AT5G54910.1 DEA (D/H)-box RNA helicase family protein
Pp1s133_35V6.1 AT1G08260.1 DNA polymerase epsilon catalytic subunit
Pp1s259_32V6.1 AT1G79690.1 Dipeptidyl-peptidase activity, hydrolase activity
Pp1s175_94V6.1 AT4G01130.1 GDSL-like Lipase/Acylhydrolase superfamily protein involved in lipid metabolic process

图5

Pp1s34_49V6参与的基因调控子网络"

1 Cabot C, Gallego B, Martos S, Barceló J, Poschenrieder C (2013). Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea.Planta 237, 337-349.
2 Chen YH, Yang XY, He K, Liu MH, Li JG, Gao ZF, Lin ZQ, Zhang YF, Wang XX, Qiu XM, Shen YP, Zhang L, Deng XH, Luo JC, Deng XW, Chen ZL, Gu HY, Qu LJ (2006). The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family.Plant Mol Biol 60, 107-124.
3 Chmielowska-Bak J, Deckert J (2012). A common res- ponse to common danger? Comparison of animal and plant signaling pathways involved in cadmium sensing.J Cell Commun Signal 6, 191-204.
4 Chmielowska-Bak J, Deckert J (2013). Nitric oxide med- iates Cd-dependent induction of signaling-associated genes.Plant Signal Behav 8, e26664.
5 Chmielowska-Bak J, Gzyl J, Rucińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014). The new insights into cadmium sensing.Front Plant Sci 5, 245.
6 Corradi MG, Gorbi G, Ricci A, Torelli A, Bassi M (1995). Chromium-induced sexual reproduction gives rise to a Cr-tolerant progeny in Scenedesmus acutus.Ecotoxicol Environ Saf 32, 12-18.
7 DalCorso G, Farinati S, Furini A (2010). Regulatory networks of cadmium stress in plants.Plant Signal Behav 5, 663-667.
8 Dovgalyuk A, Kalynyak T, Blume YB (2003). Heavy metals have a different action from aluminium in disrupting microtubules in Allium cepa meristematic cells.Cell Biol Int 27, 193-195.
9 Ercal N, Gurer-Orhan H, Aykin-Burns N (2001). Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage.Curr Top Med Chem 1, 529-539.
10 Farinati S, DalCorso G, Varotto S, Furini A (2010). The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants.New Phytol 185, 964-978.
11 Fojtová M, Fulnečková J, Fajkus J, Kovařík A (2002). Recovery of tobacco cells from cadmium stress is accompanied by DNA repair and increased telomerase activity.J Exp Bot 53, 2151-2158.
12 Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV (1998). Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars.Plant Physiol 116, 1413-1420.
13 Hartwig A, Schwerdtle T (2002). Interactions by carcinogenic metal compounds with DNA repair processes: toxicological implications.Toxicol Lett 127, 47-54.
14 Hepler PK, Hush JM (1996). Behavior of microtubules in living plant cells.Plant Physiol 112, 455-461.
15 Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006). Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88, 1751-1765.
16 Hsu YT, Kao CH (2003). Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings.Plant Cell Environ 26, 867-874.
17 Huang JJ, Okuka M, Lu WS, Tsibris JCM, McLean MP, Keefe DL, Liu L (2013). Telomere shortening and DNA damage of embryonic stem cells induced by cigarette smoke.Reprod Toxicol 35, 89-95.
18 Liu DH, Xue P, Meng QM, Zou J, Gu JG, Jiang WS (2009). Pb/Cu effects on the organization of microtubule cyto- skeleton in interphase and mitotic cells of Allium sativum L.Plant Cell Rep 28, 695-702.
19 Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS, Kim HS, Kim SH, Park HC, Yun DJ, Chung WS (2010). Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species.Phytochemistry 71, 614-618.
20 Ma WW, Xu WZ, Xu H, Chen YS, He ZY, Ma M (2010). Nitric oxide modulates cadmium influx during cadmium- induced programmed cell death in tobacco BY-2 cells.Planta 232, 325-335.
21 Nzengue Y, Steiman R, Garrel C, Lefèbvre E, Guiraud P (2008). Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: role of glutathione in the resistance to cadmium.Toxicology 243, 193-206.
22 Oono Y, Yazawa T, Kawahara Y, Kanamori H, Kobayashi F, Sasaki H, Mori S, Wu J, Handa H, Itoh T, Matsumoto T (2014). Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS One 9, e96946.
23 Přibyl P, Cepák V, Zachleder V (2008). Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure: II. The effect of aluminium, nickel and copper.Toxicol In Vitro 22, 1160-1168.
24 Qi XT, Zhang YX, Chai TY (2007). Characterization of a novel plant promoter specifically induced by heavy metal and identification of the promoter regions conferring he- avy metal responsiveness.Plant Physiol 143, 50-59.
25 Rai V, Vajpayee P, Singh SN, Mehrotra S (2004). Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L.Plant Sci 167, 1159-1169.
26 Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008). The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants.Science 319, 64-69.
27 Roth U, von Roepenack-Lahaye E, Clemens S (2006). Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+.J Exp Bot 57, 4003-4013.
28 Rother M, Krauss GJ, Grass G, Wesenberg D (2006). Sulphate assimilation under Cd2+ stress in Physcomitrella patens—combined transcript, enzyme and metabolite profiling. Plant Cell Environ 29, 1801-1811.
29 Singh I, Shah K (2014). Evidences for structural basis of altered ascorbate peroxidase activity in cadmium- stressed rice plants exposed to jasmonate.Biometals 27, 247-263.
30 van de Mortel JE, Schat H, Moerland PD, Ver Loren van Themaat E, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MG (2008). Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.Plant Cell Environ 31, 301-324.
31 Wang YC, Gao CQ, Liang YN, Wang C, Yang CP, Liu GF (2010). A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.J Plant Physiol 167, 222-230.
32 Weber M, Trampczynska A, Clemens S (2006). Compara- tive transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri.Plant Cell Environ 29, 950-963.
33 Xiong J, Fu G, Tao L, Zhu C (2010). Roles of nitric oxide in alleviating heavy metal toxicity in plants.Arch Biochem Biophys 497, 13-20.
34 Xiong J, Lu H, Lu KX, Duan YX, An LY, Zhu C (2009). Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings.Planta 230, 599-610.
35 Ye Y, Li Z, Xing D (2013). Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium- induced Arabidopsis thaliana programmed cell death.Plant Cell Environ 36, 1-15.
36 Yourtchi MS, Bayat H (2013). Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV.).Int J Agri Crop Sci 6, 1099-1103.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 丁葆祖 杨淑华 吴逸 杨静仪. 环腺苷酸(C—AMP) 对人参培养细胞生长的影响[J]. 植物学报, 1984, 2(23): 74 -75 .
[2] 方子君;石其龙;杨仲南;张森. 水稻OsMS2基因在花药发育中的功能分析[J]. 植物学报, 2008, 25(06): 665 -672 .
[3] 曲志才;沈大棱. 单头灰飞虱体内水稻条纹叶枯病毒的快速检测[J]. 植物学报, 2008, 25(04): 459 -464 .
[4] 魏开发*;刘逸萍;林子英;杨雅芳;张泽宏;贾文锁. 农杆菌介导单子叶植物遗传转化问题与对策[J]. 植物学报, 2008, 25(04): 491 -496 .
[5] 吕慧颖 李银心 孔凡江 杨庆凯. 植物Na+/H+逆向转运蛋白研究进展[J]. 植物学报, 2003, 20(03): 363 -369 .
[6] 周秋菊 张永军 米湘成 魏伟. 外源抗虫蛋白与内源抗虫因子的交互作用[J]. 植物学报, 2004, 21(06): 733 -742 .
[7] 李一琨 王金发. 高等植物启动子研究进展[J]. 植物学报, 1998, 15(增刊): 1 -6 .
[8] 李娘辉. 胞质蛋白转运到叶绿体的研究进展[J]. 植物学报, 1998, 15(增刊): 18 -23 .
[9] 鄢家俊 白史且 马啸 干友民 张建波. 老芒麦遗传多样性及育种研究进展[J]. 植物学报, 2007, 24(02): 226 -231 .
[10] 山红艳. 形态性状、分子性状与同源性[J]. 植物学报, 2007, 24(01): 71 -79 .