植物学报 ›› 2020, Vol. 55 ›› Issue (3): 382-393.doi: 10.11983/CBB20021

• 专题论坛 • 上一篇    下一篇

水稻根系遗传育种研究进展

章怡兰1,林雪1,吴仪1,李梦佳1,张晟婕1,路梅1,饶玉春1,*(),王跃星2,*()   

  1. 1浙江师范大学化学与生命科学学院, 金华 321004
    2中国水稻研究所水稻生物学国家重点实验室, 杭州 310006
  • 收稿日期:2020-02-10 接受日期:2020-04-26 出版日期:2020-05-01 发布日期:2020-07-06
  • 通讯作者: 饶玉春,王跃星 E-mail:ryc@zjnu.cn;wangyuexing@caas.cn
  • 基金资助:
    国家重大科技专项子课题(2016ZX08009003-003-008);国家自然科学基金(31971921);浙江省科协育才工程(2017YCGC008);国家级大学生创新创业训练计划(201910345023)

Research Progress on Genetics and Breeding of Rice Roots

Yilan Zhang1,Xue Lin1,Yi Wu1,Mengjia Li1,Shengjie Zhang1,Mei Lu1,Yuchun Rao1,*(),Yuexing Wang2,*()   

  1. 1College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
    2State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
  • Received:2020-02-10 Accepted:2020-04-26 Online:2020-05-01 Published:2020-07-06
  • Contact: Yuchun Rao,Yuexing Wang E-mail:ryc@zjnu.cn;wangyuexing@caas.cn

摘要:

根系作为水稻(Oryza sativa)植株的重要组成部分, 在水稻生长发育过程中发挥多种作用, 包括植物的固定、水分和营养物质的获取以及氨基酸和激素的生物合成等, 其形态结构和生理功能与水稻产量和稻米品质以及抗性等密切相关。目前, 通过遗传及生化等诸多手段, 已挖掘到较多水稻根系QTLs与控制基因。该文综述了水稻根系QTL和基因的研究进展, 并对未来根系研究进行展望, 以期为进一步克隆水稻根系基因和完善水稻理想株型模型提供参考。

关键词: 水稻, 根系, QTL定位, 控制基因

Abstract:

As an important part of rice (Oryza sativa), the root system plays multiple roles in rice growth, including plant fixation, water and nutrients acquisition, amino acid and hormone biosynthesis. Root morphological structure and physiological function are closely related to rice yield and quality, and resistance. So far, many QTLs and genes regulating rice root system have been identified through genetic and biochemical approaches. In this paper, we summarized current progress on the study of rice root system-related QTLs and genes and the future research direction, so as to provide a reference for further screening and cloning root related genes and improving the model of ideal plant architecture of rice.

Key words: rice, root system, QTL mapping, control gene

图1

水稻根系性状的QTL区间分布"

表1

水稻根长性状相关QTL统计"

QTL 标记区间 染色体 参考文献
qCRL1 RM129-RM9 1 韩龙植等, 2005
qRL1-1 M1-M29 1 贾佩陇等, 2019
qN-SRL1 Indel8-Indel4 1 索艺宁等, 2018
qRL1.3 RM8111-RM10464 1 Obara et al., 2019
qRL1.4 RM3709-RM5501 1 Obara et al., 2019
qCRE-2 S2-157-RM341 2 赵春芳等, 2013
qCRLR2 RM71-RM324 2 韩龙植等, 2005
qNRL2 RM263-RM6 2 韩龙植等, 2005
qMRL-2 RM4702-RM145 2 翟荣荣等, 2012
qSRE-2 RM3762-RM1342 2 赵春芳等, 2013
qMRL-3 RM16-RM5626 3 翟荣荣等, 2012
qARL3 Indel29-RM232 3 索艺宁等, 2018
qCRE-4 RM317-RM1113 4 赵春芳等, 2013
qRL4 RM5687-InDel49 4 徐晓明等, 2016
qMRL4 RM518-RM456 4 曲志恒, 2016
qARL5 Indel45-Indel43 5 索艺宁等, 2018
qSRE-5 RM289-RM249 5 赵春芳等, 2013
qRL7 RG650-GA476 7 吴伟明等, 2006
qN-SRL7 Indel62-RM418 7 索艺宁等, 2018
qRL8 G2132-G192 8 吴伟明等, 2006
qRL9 R1751-G385 9 姜树坤等, 2014
qRL9-1 G356B-CT410 9 吴伟明等, 2006
qRL9-2 CT453-GA65 9 吴伟明等, 2006
qRAD9 RM242-RM288 9 曲志恒, 2016
qN-ARL10 Indel94-Indel88 10 索艺宁等, 2018
qSRE-10 S10-893-RM311 10 赵春芳等, 2013
qRL11 RG2-PTA818 11 吴伟明等, 2006
qNRL11 RM287-RM229 11 韩龙植等, 2005
qRL12-1 CT462-G124-1B 12 吴伟明等, 2006
qRL12-2 RG413-G148 12 吴伟明等, 2006
qNRL12 RM270-RM17 12 韩龙植等, 2005
qSRE-12 RM277-RM313 12 赵春芳等, 2013

表2

水稻须根数性状相关QTL统计"

QTL 标记区间 染色体 参考文献
qRN-1 G370 -CT67 1 胡兴明等, 2004
qRN-2 G243A-GA43 2 胡兴明等, 2004
qCRN2 RM263-RM6 2 韩龙植等, 2005
qNRN4-1 RM349-RM348 4 韩龙植等, 2005
qNRN4-2 Indel31-Indel38 4 索艺宁等, 2018
qRT6 G200-C235 6 吴伟明等, 2006
qNRN7 RM11-RM336 7 韩龙植等, 2005
qNRN7-1 RM182-RM346 7 索艺宁等, 2018
qNRN7-2 Indel61-Indel65 7 索艺宁等, 2018
qRT8-1 G2132-G192 8 吴伟明等, 2006
qRT8-2 CT56-G187 8 吴伟明等, 2006
qRT9-1 RZ617B-CDO590 9 吴伟明等, 2006
qRT9-2 RZ404-CT453 9 吴伟明等, 2006
qNRN10 RM474-Indel89 10 索艺宁等, 2018
qRT10 CT387-L169 10 吴伟明等, 2006
qRN-11 CT533-CT553 11 胡兴明等, 2004
qRN-12 RG463-G148 12 胡兴明等, 2004
qRT12-1 CT462-G124-1B 12 吴伟明等, 2006
qRT12-2 G148-RG463 12 吴伟明等, 2006
qRT12-3 G1106-RG181 12 吴伟明等, 2006

表3

水稻根体积相关QTL统计"

QTL 标记区间 染色体 参考文献
rv1a RM472-RM1198 1 McCouch et al., 2002
rv1b RM1198-RM1003 1 McCouch et al., 2002
rv1c RM113-RM493 1 Temnykh et al., 2000
rv1d RM5-RM9 1 McCouch et al., 2002
qRV-2 RM327-RM2634 2 翟荣荣等, 2012
rv2 RM438-RM492 2 McCouch et al., 2002
rv3 RM231-RM175 3 McCouch et al., 2002
rv4a RM1153-RM348 4 McCouch et al., 2002
rv4b RM349-RM1136 4 McCouch et al., 2002
rv4c RM177-RM1155 4 McCouch et al., 2002
rv4d RM1113-RM1153 4 Temnykh et al., 2000
qRV5-1 RM19159-RM437 5 曲志恒, 2016
qRV5-2 RM437-RM480 5 曲志恒, 2016
rv5-5 RM430-RM146 5 McCouch et al., 2002
rv5-6 RM146-RM509 5 McCouch et al., 2002
qRV-6 RM510-RM19417 6 翟荣荣等, 2012
rv6 RM345-RM412 6 Temnykh et al., 2000
qRV7 RI04738-RM336 7 曲志恒, 2016
rv7a RM18-RM47 7 McCouch et al., 2002
rv7b RM478-RM18 7 McCouch et al., 2002
rv8a RM210-RM502 8 McCouch et al., 2002
rv8b RM502-RM1308 8 McCouch et al., 2002
rv8c RM1308-RM264 8 McCouch et al., 2002
qRV9-1 RM205-RM242 9 曲志恒, 2016
qRV9-2 RM242-RM288 9 曲志恒, 2016
rv9a RM342-RM409 9 Temnykh et al., 2000
rv9b RM410-RM215 9 Temnykh et al., 2000
rv10-1 RM171-RM1108 10 Temnykh et al., 2000
rv11-2 RM332-RM1124 11 Temnykh et al., 2000
rv11-6 RM202-RM229 11 Temnykh et al., 2000
rv11-7 RM229-RM21 11 Temnykh et al., 2000
rv12a RM491-RM101 12 Temnykh et al., 2000
rv12b RM270-RM1227 12 Temnykh et al., 2000

表4

已克隆的水稻根系性状相关基因"

基因 对应基因编码的蛋白 对应的突变体表型 参考文献
Dro1 Dro1 深根 Clark et al., 2013
Rf1a/Rf-1/Rf5 三角状五肽重复区蛋白 主根变长, 侧根数增加, 育性恢复 Zhang et al., 2016
CRL1 1个冠状根和侧根形成的正向调节因子 冠状根的发生 Inukai et al., 2005
ARL1 1个含有LOB结构域的蛋白 不定根的形成 Liu et al., 2005
OsCKI1 I型酪蛋白激酶 较短的初生根、侧根及不定根数少 Liu et al., 2003
WOX11 1个由262氨基酸组成的蛋白产物 冠状根数增加, 产生不定根 Zhao et al., 2015
Crl4 1个拟南芥GNOM的同源蛋白 冠状根的形成 Kitomi et al., 2008
OsGNOM1 ADP核糖基化因子的鸟苷酸交换因子 不定根的形成 Liu et al., 2009
OsRAA1 1个12 kDa的小G蛋白 主根生长被抑制, 不定根增加 Chen et al., 2018a
OsPIN1 生长素输出载体 抑制不定根的发生 Xu et al., 2014
OsCAND1 1个拟南芥CAND1的同源基因 抑制冠状根形成 Wang et al., 2011
OsAHP1 组氨酸磷酸转移蛋白 侧根生长, 育性降低 Sun et al., 2014
OsAHP2 组氨酸磷酸转移蛋白 侧根生长, 育性降低 Sun et al., 2014
OsCYP2 肽基脯氨酰顺反异构酶 侧根丧失, 育性降低 Kumari et al., 2015
LRT2 亲环素蛋白 侧根减少 Jing et al., 2015
OsPIN5b 生长素输出载体 降低根生物量、结实率以及产量 Lu et al., 2015
OsSAP16 1个胁迫相关的蛋白 根生物量降低, 根系结构变小 Wang et al., 2016
SOR1 1个E3泛素连接酶 形成地表根, 抑制根正常生长 Chen et al., 2018b
OsIAA3 水稻Aux/IAA蛋白 冠状根数目减少 Nakamura et al., 2006
EL5 泛素连接酶 无根, 冠状根变短, 侧根坏死 Mochizuki et al., 2014
Crl-5 1个AP2/ERF转录因子家族成员 不定根发生 Kitomi et al., 2011
CHR729 染色质域解旋酶DNA结合蛋白 抑制根生长 Xu et al., 2017
CRL6 SNF2家族蛋白 冠状根减少, 结实率降低 Wang et al., 2016
OsIAA11 水稻Aux/IAA蛋白 抑制侧根发育 Jing et al., 2015
OsERF3 乙烯应答因子 促进冠状根发育 Zhao et al., 2015
OsWRKY74 WRKY转录因子 根伸长, 不定根增加, 产量增加 Dai et al., 2016
OsWOX3A WUSCHEL相关的同源框蛋白 侧根数目减少, 结实率降低 Cho et al., 2016
OsNAR2.1 硝酸盐转运蛋白伴侣蛋白 根长/不定根变短, 侧根数目减少 Huang et al., 2015
OsCKX4 细胞分裂素氧化酶/脱氢酶 冠状根生长 Gao et al., 2014
REL2 1个包含DUF结构域的蛋白 不定根减少且变短 Yang et al., 2016
[1] 陈亮 (2016). 水稻根系育种的意义与前景. 南方农业 10(24), 151-152.
[2] 褚光 (2016). 不同水分、养分利用效率水稻品种的根系特征及其调控技术. 博士论文. 扬州: 扬州大学. pp. 22-24.
[3] 代云 (2009). 水稻核心种质根系特征及其与抗旱性关系. 硕士论文. 武汉: 华中农业大学. pp. 11-12.
[4] 丁仕林, 刘朝雷, 钱前 (2019). 水稻根系遗传研究进展. 中国稻米 25(5), 24-29.
[5] 范楚玉 (1982). 西周农事诗中反映的粮食作物选种及其发展. 自然科学史研究 1, 267-272.
[6] 方福平, 程式华 (2018). 水稻科技与产业发展. 农学学报 8, 92-98.
[7] 谷娇娇, 胡博文, 贾琰, 沙汉景, 李经纬, 马超, 赵宏伟 (2019). 盐胁迫对水稻根系相关性状及产量的影响. 作物杂志 4, 176-182.
[8] 韩龙植, 张三元, 乔永利, 阮仁超, 张俊国, 曹桂兰, 高熙宗 (2005). 冷水胁迫下水稻幼苗期根系性状的QTL分析. 作物学报 31, 1415-1421.
[9] 侯丹平, 余超, 刘海浪, 蔡晗, 张宇翔, 朱庆权, 周益雷, 景文疆, 张耗 (2018). 水稻高产高效的根系特性及其调控. 中国稻米 24(4), 3-8.
[10] 胡兴明, 郭龙彪, 曾大力, 高振宇, 滕胜, 李浩戈, 朱立煌, 钱前 (2004). 水稻苗期发根力的QTL和上位性分析. 中国水稻科学 5, 22-26.
[11] 黄文江, 王纪华, 赵春江, 黄义德, 陶汉之, 陶庆会 (2002). 水稻旱作条件下渗透调节物质和激素含量的研究. 干旱地区农业研究 20, 61-64, 80.
[12] 黄耀祥 (2003). 水稻生态育种新发展——两源并举组群筛选超优势稻的选育研究. 广东农业科学 (3), 2-6.
[13] 贾佩陇, 李彪, 黎明辉, 刘剑镔, 李容柏, 罗继景 (2019). 基于水稻染色体片段代换系的苗期耐低氮QTL分析. 华南农业大学学报 40(4), 16-24.
[14] 姜树坤, 张凤鸣, 白良明, 孙世臣, 王彤彤, 丁国华, 姜辉, 张喜娟 (2014). 水稻移栽后新生根系相关性状的QTL分析. 中国水稻科学 28, 598-604.
[15] 李素梅, 施卫明 (2007). 不同氮形态对两种基因型水稻根系形态及氮吸收效率的影响. 土壤 39, 589-593.
[16] 李永夫 (2006). 水稻适应低磷胁迫的营养生理机理研究. 博士论文. 杭州: 浙江大学. pp. 70-80.
[17] 梁永书, 周军杰, 南文斌, 段东东, 张汉马 (2016). 水稻根系研究进展. 植物学报 51, 98-106.
[18] 凌启鸿, 陆卫平, 蔡建中, 曹显祖 (1989). 水稻根系分布与叶角关系的研究初报. 作物学报 15, 123-131.
[19] 刘红江, 蒋银涛, 陈留根, 郑建初 (2015). 不同播栽方式对水稻根系生长及产量形成的影响. 江苏农业学报 31, 310-316.
[20] 刘桃菊, 戚昌瀚, 唐建军 (2002). 水稻根系建成与产量及其构成关系的研究. 中国农业科学 35, 1416-1419.
[21] 吕丙盛 (2014). 水稻(Oryza sativa L.)应对盐碱胁迫的生理及分子机制研究. 博士论文. 北京: 中国科学院大学. pp. 27-30.
[22] 乔金玲, 张景龙 (2019). 黑龙江省水稻育种研究进展. 现代化农业 (4), 39-41.
[23] 曲志恒 (2016). 水稻根系相关性状QTL定位. 硕士论文. 广州: 华南农业大学. pp. 30-32.
[24] 沈希宏 (2018). 稻从哪里来. 中国农村科技 (4), 80-81.
[25] 石庆华, 李木英, 徐益群, 张佩莲 (1995). 水稻根系特征与地上部关系的研究初报. 江西农业大学学报 17, 110-115.
[26] 索艺宁, 张春可, 于乔乔, 张恩源, 谢冬微, 冷月, 王亮, 孙健 (2018). 盐、碱胁迫下水稻苗期根数和根长的QTL分析. 华北农学报 33(5), 9-15.
[27] 陶荣荣, 蔡晗, 朱庆权, 周益雷, 王康平, 余超, 侯丹平, 刘海浪, 张耗 (2018). 水稻高产高效的根-冠互作机制研究进展. 中国农学通报 34(5), 1-4.
[28] 汪妮娜, 黄敏, 陈德威, 徐世宏, 韦善清, 江立庚 (2013). 不同生育期水分胁迫对水稻根系生长及产量的影响. 热带作物学报 34, 1650-1656.
[29] 王贺, 王伯伦, 李静, 王术, 黄元财, 贾宝艳 (2009). 不同穗型水稻品种根系空间分布的研究. 安徽农业科学 37, 5414-5417.
[30] 魏磊, 董华林, 武晓智, 费震江 (2015). 水稻根系育种研究进展(英文). 农业科学与技术 16, 675-678.
[31] 吴伟明 (2006). 水稻根系性状的遗传及基因定位. 博士论文. 北京: 中国农业科学院. pp. 37-50.
[32] 徐晓明, 张迎信, 王会民, 任翠, 王汝慈, 沈希宏, 占小登, 吴玮勋, 程式华, 曹立勇 (2016). 一个水稻根长QTL qRL4的分离鉴定. 中国水稻科学 30, 363-370.
[33] 杨守仁, 张龙步, 王进民 (1984). 水稻理想株形育种的理论和方法初论. 中国农业科学 17(3), 6-13.
[34] 袁隆平 (2011). 新株型育种进展. 杂交水稻 26(4), 72-74.
[35] 翟荣荣, 冯跃, 王会民, 陈艳丽, 吴伟明, 占小登, 沈希宏, 戴高兴, 杨占烈, 曹立勇, 程式华 (2012). 不同水分条件下水稻苗期根系性状的QTL分析. 核农学报 26, 975-982.
[36] 张习春, 张应洲, 圣忠华, 龙武华, 吴健强, 朱速松, 魏祥进 (2019). 水稻株型相关性状QTL定位研究. 江苏农业科学 47(18), 102-108.
[37] 赵春芳, 张亚东, 陈涛, 赵庆勇, 朱镇, 周丽慧, 姚姝, 于新, 王才林 (2013). 低磷胁迫下水稻苗期根长性状的QTL定位. 华北农学报 28(6), 6-10.
[38] 周爱军 (2002). 水稻结实期根系与籽粒中细胞分裂素浓度的变化与籽粒充实的关系及其调控的研究. 硕士论文. 扬州: 扬州大学. pp. 35-40.
[39] 周正平, 占小登, 沈希宏, 曹立勇 (2019). 我国水稻育种发展现状、展望及对策. 中国稻米 25(5), 1-4.
[40] Adu MO, Yawson DO, Armah FA, Asare PA, Frimpon KA (2018). Meta-analysis of crop yields of full, deficit, and partial root-zone drying irrigation. Agric Water Manag 197, 79-90.
[41] Chen G, Liu CL, Gao ZY, Zhang Y, Zhu L, Hu J, Ren DY, Xu GH, Qian Q (2018a). Driving the expression of RAA1 with a drought-responsive promoter enhances root growth in rice, its accumulation of potassium and its tolerance to moisture stress. Environ Exp Bot 147, 147-156.
[42] Chen H, Ma B, Zhou Y, He SJ, Tang SY, Lu X, Xie Q, Chen SY, Zhang JS (2018b). E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein. Proc Natl Acad Sci USA 115, 4513-4518.
[43] Cho SH, Kang KY, Lee SH, Lee IJ, Paek NC (2016). OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa). J Exp Bot 67, 1677-1687.
pmid: 26767749
[44] Cho SH, Yoo SC, Zhang HT, Pandeya D, Koh HJ, Hwang JY, Kim GT, Peak NC (2013). The ricenarrow leaf 2 and narrow leaf 3 loci encode WUSCHEL-related homeobox 3a (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol 198, 1071-1084.
[45] Clark RT, Famoso AN, Zhao K, Shaff JE, Craft EJ, Bustamante CD, McCouch SR, Aneshansley DJ, Kochian LV (2013). High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ 36, 454-466.
[46] Coudert Y, Périn C, Courtois B, Khong NG, Gantet P (2010). Genetic control of root development in rice, the model cereal. Trends Plant Sci 15, 219-226.
[47] Dai XY, Wang YY, Zhang WH (2016). OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot 67, 947-960.
pmid: 26663563
[48] Donald CM (1968). The breeding of crop ideotypes. Euphytica 17, 385-403.
[49] Gao SP, Fang J, Xu F, Wang W, Sun XH, Chu JF, Cai BD, Feng YQ, Chu CC (2014). CYTOKININ OXIDASE/DEHYDROGENASE 4 integrates cytokinin and auxin signaling to control rice crown root formation. Plant Physiol 165, 1035-1046.
doi: 10.1104/pp.114.238584 pmid: 24808099
[50] Huang SJ, Chen S, Liang ZH, Zhang CM, Yan M, Chen JG, Xu GH, Fan XR, Zhang YL (2015). Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner. Sci Rep 5, 18192.
pmid: 26644084
[51] Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005). Crown rootless 1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17, 1387-1396.
pmid: 15829602
[52] Jing HW, Yang XL, Zhang J, Liu XH, Zheng HK, Dong GJ, Nian JQ, Feng J, Xia B, Qian Q, Li JY, Zuo JR (2015). Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signaling. Nat Commun 6, 7395.
pmid: 26096057
[53] Jongdee B, Fukai S, Cooper M (2002). Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res 76, 153-163.
[54] Khush GS (1995). Breaking the yield frontier of rice. GeoJournal 35, 329-332.
doi: 10.1007/BF00989140
[55] Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y (2011). The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J 67, 472-484.
doi: 10.1111/j.1365-313X.2011.04610.x
[56] Kitomi Y, Ogawa A, Kitano H, Inukai Y (2008). CRL4 regulates crown root formation through auxin transport in rice. Plant Root 2, 19-28.
doi: 10.3117/plantroot.2.19
[57] Kong FL ( 2006). Summary of QTL mapping. In: Quantitative Genetics in Plants. Beijing: China Agricultural University Press. pp. 358-359.
[58] Kumari S, Joshi R, Singh K, Roy S, Tripathi AK, Singh P, Singla-Pareek SL, Pareek A (2015). Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation. Funct Integr Genomics 15, 395-412.
pmid: 25523384
[59] Li J, Zhu SH, Song XW, Shen Y, Chen HM, Yu J, Yi KK, Liu YF, Karplus VJ, Wu P, Deng XW (2006). A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem. Plant Cell 18, 340-349.
[60] Liu HJ, Wang SF, Yu XB, Yu J, He XW, Zhang SL, Shou HX, Wu P (2005). ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43, 47-56.
doi: 10.1111/j.1365-313X.2005.02434.x pmid: 15960615
[61] Liu SP, Wang JR, Wang L, Wang XF, Xue YH, Wu P, Shou HX (2009). Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res 19, 1110-1119.
doi: 10.1038/cr.2009.70 pmid: 19546891
[62] Liu W, Xu ZH, Luo D, Xue HW (2003). Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J 36, 189-202.
pmid: 14535884
[63] Lu GW, Coneva V, Casaretto JA, Ying S, Mahmood K, Liu F, Nambara E, Bi YM, Rothstein SJ (2015). OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. Plant J 83, 913-925.
doi: 10.1111/tpj.12939 pmid: 26213119
[64] McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li ZK, Xing YZ, Zhang QF, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002). Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9, 199-207.
[65] Mochizuki S, Jikumaru Y, Nakamura H, Koiwai H, Sasaki K, Kamiya Y, Ichikawa H, Minami E, Nishizawa Y (2014). Ubiquitin ligase EL5 maintains the viability of root meristems by influencing cytokinin-mediated nitrogen effects in rice. J Exp Bot 65, 2307-2318.
[66] Nada RM, Abo-Hegazy SE, Budran EG, Abogadallah GM (2019). The interaction of genes controlling root traits is required for the developmental acquisition of deep and thick root traits and improving root architecture in response to low water or nitrogen content in rice (Oryza sativa L.) cultivars. Plant Physiol Biochem 141, 122-132.
pmid: 31151078
[67] Nakamura A, Umemura I, Gomi K, Hasegawa Y, Kitano H, Sazuka T, Matsuoka M (2006). Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein. Plant J 46, 297-306.
[68] Obara M, Fukuta Y, Yanagihara S (2019). Genetic variation and QTLs related to root development in upland New Rice for Africa (NERICA) varieties. Breeding Sci 69, 94-103.
[69] Shrestha R, Al-Shugeairy Z, Al-Ogaidi F, Munasinghe M, Radermacher M, Vandenhirtz J, Price AH (2014). Comparing simple root phenotyping methods on a core set of rice genotypes. Plant Biol 16, 632-642.
pmid: 24015692
[70] Sun LJ, Zhang Q, Wu JX, Zhang LQ, Jiao XW, Zhang SW, Zhang ZG, Sun DY, Lu TG, Sun Y (2014). Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice. Plant Physiol 165, 335-345.
pmid: 24578505
[71] Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000). Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100, 697-712.
[72] Wang F, Coe RA, Karki S, Wanchana S, Thakur V, Henry A, Lin HC, Huang JL, Peng SB, Quick WP (2016). Overexpression of OsSAP16 regulates photosynthesis and the expression of a broad range of stress response genes in rice (Oryza sativa L.). PLoS One 11, e0157244.
pmid: 27303811
[73] Wang XF, He FF, Ma XX, Mao CZ, Hodgman C, Lu CG, Wu P (2011). OsCAND1 is required for crown root emergence in rice. Mol Plant 4, 289-299.
pmid: 20978084
[74] Wang YH, Wang D, Gan T, Liu LL, Long WH, Wang YL, Niu M, Li XH, Zheng M, Jiang L, Wan JM (2016). CRL6, a member of the CHD protein family, is required for crown root development in rice. Plant Physiol Biochem 105, 185-194.
pmid: 27108205
[75] Xu HW, Mo YW, Wang W, Wang H, Wang Z (2014). OsPIN1a gene participates in regulating negative phototropism of rice roots. Rice Sci 21, 83-89.
[76] Xu J, Wang L, Zhou MY, Zeng DL, Hu J, Zhu L, Ren DY, Dong GJ, Gao ZY, Guo LB, Qian Q, Zhang WZ, Zhang GH (2017). Narrow albino leaf 1 is allelic to CHR729, regulates leaf morphogenesis and development by affecting auxin metabolism in rice. Plant Growth Regul 82, 175-186.
[77] Yang SQ, Li WQ, Miao H, Gan PF, Qiao L, Chang YL, Shi CH, Chen KM (2016). REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice 9, 37.
doi: 10.1186/s12284-016-0105-6 pmid: 27473144
[78] Zhang HG, Zhang LJ, Si H, Ge YS, Liang GH, Gu MH, Tang SZ (2016). Rf5 is able to partially restore fertility to Honglian-type cytoplasmic male sterile japonica rice (Oryza sativa) lines. Mol Breeding 36, 102.
doi: 10.1007/s11032-016-0511-x
[79] Zhao Y, Cheng SF, Song YL, Huang YL, Zhou SL, Liu XY, Zhou DX (2015). The interaction between rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling. Plant Cell 27, 2469-2483.
doi: 10.1105/tpc.15.00227 pmid: 26307379
[1] 韩雪 苏锦权 姚娜娜 陈宝明. 外来入侵植物的根系觅养行为研究进展[J]. 生物多样性, 2020, 28(6): 0-0.
[2] 管柳蓉, 刘祖培, 徐冉, 段朋根, 张国政, 于海跃, 李静, 罗越华, 李云海. 一个新的OsBRI1弱等位突变体的鉴定及其调控种子大小的功能研究[J]. 植物学报, 2020, 55(3): 279-286.
[3] 韩美玲, 谭茹姣, 晁代印. “绿色革命”新进展: 赤霉素与氮营养双重调控的表观修饰助力水稻高产高效育种[J]. 植物学报, 2020, 55(1): 5-8.
[4] 张乔艳,唐丽霞,廖华刚,潘露,陈龙,黄同丽. 多花木蓝根截面微观结构对其抗拉特性的影响[J]. 植物生态学报, 2019, 43(8): 709-717.
[5] 张淑辉,王红,王文茹,吴雪莲,肖元松,彭福田. 蔗糖对桃幼苗生长发育及其SnRK1酶活性的影响[J]. 植物学报, 2019, 54(6): 744-752.
[6] 张彤,郭亚璐,陈悦,马金姣,兰金苹,燕高伟,刘玉晴,徐珊,李莉云,刘国振,窦世娟. 水稻OsPR10A的表达特征及其在干旱胁迫应答过程中的功能[J]. 植物学报, 2019, 54(6): 711-722.
[7] 张硕, 吴昌银. 长链非编码RNA基因Ef-cd调控水稻早熟与稳产[J]. 植物学报, 2019, 54(5): 550-553.
[8] 李伟滔, 贺闽, 陈学伟. ZmFBL41 Chang7-2: 玉米抗纹枯病的关键利器[J]. 植物学报, 2019, 54(5): 547-549.
[9] 周纯, 焦然, 胡萍, 林晗, 胡娟, 徐娜, 吴先美, 饶玉春, 王跃星. 水稻早衰突变体LS-es1的基因定位及候选基因分析[J]. 植物学报, 2019, 54(5): 606-619.
[10] 田怀东, 李菁, 田保华, 牛鹏飞, 李珍, 岳忠孝, 屈雅娟, 姜建芳, 王广元, 岑慧慧, 李南, 闫枫. 水稻两性生殖细胞的N-甲基-N-亚硝基脲诱变方法[J]. 植物学报, 2019, 54(5): 625-633.
[11] 苗青霞, 方燕, 陈应龙. 小麦根系特征对干旱胁迫的响应[J]. 植物学报, 2019, 54(5): 652-661.
[12] 刘栋峰, 唐永严, 雒胜韬, 罗伟, 李志涛, 种康, 徐云远. 利用低温水浴鉴定水稻苗期耐寒性[J]. 植物学报, 2019, 54(4): 509-514.
[13] 刘进, 姚晓云, 余丽琴, 李慧, 周慧颖, 王嘉宇, 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 464-473.
[14] 程新杰, 于恒秀, 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 503-508.
[15] 王孝林,王二涛. 根际微生物促进水稻氮利用的机制[J]. 植物学报, 2019, 54(3): 285-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 关萍 石建明 李淑久. 绞股兰下胚轴愈伤组织发生与器官再生的组织学观察[J]. 植物学报, 1994, 11(专辑): 19 .
[2] 肖啸 程振起. 叶绿体4.5 SrRNA II. 基因与起源[J]. 植物学报, 1985, 3(06): 7 -9 .
[3] 曹翠玲李生秀. 供氮水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响[J]. 植物学报, 2003, 20(03): 319 -324 .
[4] 宋莉英 谭诤 高峰 邓暑燕. 我国葫芦科植物离体培养研究进展[J]. 植物学报, 2004, 21(03): 360 -366 .
[5] 柯曼琴 张慧 秦月秋. PP333对曲阜香稻茎秆解剖结构的影响初报[J]. 植物学报, 1994, 11(专辑): 76 .
[6] 李俊德 杨健 王宇飞. 山东山旺中新世的水生植物[J]. 植物学报, 2000, 17(专辑): 261 .
[7] 孙震晓 夏光敏 陈惠民. 新麦草的核型分析[J]. 植物学报, 1995, 12(01): 56 .
[8] 王立军 谷安根 张友民 贾伟平. 南瓜幼苗初生维管系统的解剖学研究[J]. 植物学报, 1994, 11(专辑): 8 -9 .
[9] 郑云普;赵建成*;张丙昌;李琳;张元明. 荒漠生物结皮中藻类和苔藓植物研究进展[J]. 植物学报, 2009, 44(03): 371 -378 .
[10] 伍自力, 余孟瑶, 陈露, 魏静, 王晓琴, 胡勇, 闫妍, 万平. 小立碗藓对重金属镉胁迫的应答特征[J]. 植物学报, 2015, 50(2): 171 -179 .