植物学报 ›› 2016, Vol. 51 ›› Issue (3): 283-286.doi: 10.11983/CBB16070

• • 上一篇    下一篇

RNA 解旋酶调控rRNA内稳态: 水稻耐热 新机制、分子育种新资源

胡时开1,2, 钱前1,2*()   

  1. 1中国水稻研究所, 水稻生物学国家重点实验室, 杭州 310006
    2中国农业科学院深圳农业基因组研究所, 深圳 518120
  • 收稿日期:2016-04-04 接受日期:2016-04-26 出版日期:2016-05-01 发布日期:2016-05-24
  • 通讯作者: 钱前 E-mail:qianqian188@hotmail.com
  • 作者简介:? 共同第一作者

DEAD-box RNA Helicase Regulate rRNA Homeostasis: New Mechanism on Rice Thermotolerance, New Prospective on Rice Molecular Breeding

Shikai Hu1, 2, Qian Qian1, 2*   

  1. 1State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
    2Agriculture Genome Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
  • Received:2016-04-04 Accepted:2016-04-26 Online:2016-05-01 Published:2016-05-24
  • Contact: Qian Qian E-mail:qianqian188@hotmail.com
  • About author:? These authors contributed equally to this paper

摘要:

高温热害是影响水稻(Oryza sativa)产量形成的重要限制因子。DEAD-box RNA解旋酶在核糖体RNA前体加工及植物抗逆中扮演着重要角色。最近, 中国科学家在DEAD-box RNA解旋酶调控水稻耐热性分子机理研究方面取得了突破性进展。

关键词: DEAD-box RNA解旋酶, 内稳态, 核糖体RNA (rRNA), 水稻, 耐热性

Abstract:

High temperature stress is a significant factor limiting rice growth and yield formation. DEAD-box RNA helicase plays a vital role in the processing of pre-rRNA and plant stresses response. Recently, Chinese scientists have great progress in the molecular mechanism of regulating thermo-tolerant of DEAD-box RNA helicase in rice.

Key words: DEAD-box RNA helicase, homeostasis, ribosomal RNA (rRNA), rice, thermotolerance

[1] Amin M, Elias S, Hossain A, Ferdousi A, Rahman M, Tuteja N, Seraj Z (2012). Over-expression of a DEAD- box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.).Mol Breed 30, 345-354.
[2] Bita C, Gerats T (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops.Front Plant Sci 4, 273.
[3] Challinor A, Watson J, Lobell D, Howden S, Smith D, Chhetri N (2014). A meta-analysis of crop yield under climate change and adaptation.Nat Clim Chang 4, 287-291.
[4] Chen Y, Potratz J, Tijerina P, Del Campo M, Lambowitz A, Russell R (2008). DEAD-box proteins can completely separate an RNA duplex using a single ATP.Proc Natl Acad Sci USA 105, 20203-20208.
[5] Cordin O, Banroques J, Tanner N, Linder P (2006). The DEAD-box protein family of RNA helicases.Gene 367, 17-37.
[6] Dragon F, Gallagher J, Compagnone-Post P, Mitchell B, Porwancher K, Wehner K, Wormsley S, Settlage R, Shabanowitz J, Osheim Y, Beyer A, Hunt DF, Baserga S (2002). A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis.Nature 417, 967-970.
[7] Gong Z, Dong C, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu J (2005). A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis.Plant Cell 17, 256-267.
[8] Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu J (2002). RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance.Proc Natl Acad Sci USA 99, 11507-11512.
[9] Granneman S, Bernstein K, Blelchert F, Baserga S (2006). Comprehensive mutational analysis of yeast DEXD/H box RNA helicases required for small ribosomal subunit synthesis.Mol Cell Biol 26, 1183-1194.
[10] Kang H, Park S, Kwak K (2012). Plant RNA chaperones in stress response.Trends Plant Sci 18, 100-106.
[11] Kim J, Kim K, Oh T, Park C, Kang H (2008). Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 49, 1563-1571.
[12] Li X, Chao D, Wu Y, Huang X, Chen K, Cui L, Su L, Ye W, Chen H, Chen H, Dong N, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan J, Gao J, Lin H (2015). Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice.Nat Genet 47, 827-833.
[13] Linder P, Owttrim G (2009). Plant RNA helicases: linking aberrant and silencing RNA.Trends Plant Sci 14, 344-352.
[14] Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015). COLD1 confers chilling tolerance in rice.Cell 160, 1209-1221.
[15] Macovei A, Tuteja N (2012). MicroRNAs targeting DEAD- box helicases are involved in salinity stress response in rice (Oryza sativa L.).BMC Plant Biol 12, 183.
[16] McClung C, Davis S (2010). Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing.Curr Biol 20, R1086-R1092.
[17] Mittler R, Finka A, Goloubinoff P (2012). How do plants feel the heat?Trends Biochem Sci 37, 118-125.
[18] Owttrim G (2006). RNA helicases and abiotic stress.Nucleic Acids Res 34, 3220-3230.
[19] Owttrim G (2013). RNA helicases: diverse roles in prokaryotic response to abiotic stress.RNA Biol 1, 96-110.
[20] Pyle A (2008). Translocation and unwinding mechanisms of RNA and DNA helicases.Annu Rev Biophys 37, 317-336.
[21] Ray D, Gerber J, MacDonald G, West P (2015). Climate variation explains a third of global crop yield variability.Nat Commun 6, 5989.
[22] Shen H, Zhong X, Zhao F, Wang Y, Yan B, Li Q, Chen G, Mao B, Wang J, Li Y, Xiao G, He Y, Xiao H, Li J, He Z (2015). Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato.Nat Biotechnol 33, 996-1003.
[23] Tuteja N, Sahoo R, Garg B, Tuteja R (2013). OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. ‘IR64’).Plant J 76, 115-127.
[24] Umate P, Tuteja R, Tuteja N (2010). Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human.Plant Mol Biol 73, 449-465.
[25] Venema J, Tollervey D (1995). Processing of pre-ribosomal RNA in Saccharomyces cerevisiae.Yeast 11, 1629-1650.
[26] Wahid A, Gelani S, Ashraf M, Foolad M (2007). Heat tolerance in plants: an overview.Environ Exp Bot 61, 199-223.
[27] Wang D, Qin B, Li X, Tang D, Zhang Y, Cheng Z, Xue Y (2016). Nucleolar DEAD-Box RNA helicase TOGR1 re- gulates thermotolerant growth as a pre-rRNA chaperone in rice.PLoS Genet 12, e1005844.
[1] 田怀东 李菁 田保华 牛鹏飞 李珍 岳忠孝 屈雅娟 姜建芳 王广元 岑慧慧 李南 闫枫. 水稻两性生殖细胞的N-甲基-N-亚硝基脲诱变方法[J]. 植物学报, 2019, 54(5): 0-0.
[2] 王跃星 饶玉春 焦然 周纯 林晗 徐娜 胡娟 胡萍 吴先美. 水稻早衰突变体LS-es1的基因定位及候选基因分析[J]. 植物学报, 2019, 54(5): 0-0.
[3] 刘进 姚晓云 余丽琴 李慧 周慧颖 王嘉宇 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 0-0.
[4] 徐云远 种康. 利用低温水浴鉴定水稻苗期耐冷性[J]. 植物学报, 2019, 54(4): 0-0.
[5] 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 0-0.
[6] 王孝林,王二涛. 根际微生物促进水稻氮利用的机制[J]. 植物学报, 2019, 54(3): 285-287.
[7] 栗露露,殷文超,牛梅,孟文静,张晓星,童红宁. 油菜素甾醇调控水稻盐胁迫应答的作用研究[J]. 植物学报, 2019, 54(2): 185-193.
[8] 叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春. 水稻细菌性穗枯病的病原特性和抗性研究进展[J]. 植物学报, 2019, 54(2): 277-283.
[9] 陈琳,林焱,陈鹏飞,王绍华,丁艳锋. 水稻响应缺铁的韧皮部汁液蛋白质组学分析[J]. 植物学报, 2019, 54(2): 194-207.
[10] 朱丽, 钱前. 虾青素功能米: 生物强化新思路, 优质米培育新资源[J]. 植物学报, 2019, 54(1): 4-8.
[11] 薛治慧, 种康. 中国科学家在杂种F1克隆繁殖研究领域取得突破性进展[J]. 植物学报, 2019, 54(1): 1-3.
[12] 周亭亭, 饶玉春, 任德勇. 水稻卷叶细胞学与分子机制研究进展[J]. 植物学报, 2018, 53(6): 848-855.
[13] 鲁丹, 王丽, 宋凡, 陶菊红, 张大兵, 袁政. 水稻OsJMJ718基因可选择性多聚腺苷酸化序列的 克隆及生殖发育期表达模式[J]. 植物学报, 2018, 53(5): 594-602.
[14] 刘魏, 童永鳌, 白洁. 水稻雄配子体发育过程中tRNA片段的生物信息学分析[J]. 植物学报, 2018, 53(5): 625-633.
[15] 黄新元, 赵方杰. 植物防御素调控水稻镉积累的新机制[J]. 植物学报, 2018, 53(4): 451-455.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李枞 宋艳茹. 利用基因工程的手段提高植物中淀粉含量[J]. 植物学报, 1995, 12(01): 6 -13 .
[2] 高英 郭建强 赵金凤. 拟南芥表皮毛发育的分子机制[J]. 植物学报, 2011, 46(1): 119 -127 .
[3] 张付斗, 李天林, 徐高峰, 吴迪, 张玉华. 薇甘菊不同生长方式下的繁殖特征比较[J]. 植物学报, 2011, 46(1): 59 -66 .
[4] 杜玮炜;黄宏文;. 雷公藤次生代谢产物雷公藤红素含量与环境因子相关性分析[J]. 植物学报, 2008, 25(06): 707 -713 .
[5] 罗春玲 沈振国. 植物对重金属的吸收和分布[J]. 植物学报, 2003, 20(01): 59 -66 .
[6] 叶玉坤. 叶绿体DNA分子克隆技术[J]. 植物学报, 1985, 3(01): 55 -56 .
[7] 张强;陈军文;陈亚军;曹坤芳;李保贵 . 西双版纳热带雨林中两种生态型蕨类植物的光合特性比较研究[J]. 植物学报, 2008, 25(06): 673 -679 .
[8] 李明义. 胞间连丝向胞间通道转化的机理[J]. 植物学报, 1997, 14(增刊): 36 -39 .
[9] 周俊彦 郭扶兴. 植物快速营养繁殖中的繁殖速度及产率的计算[J]. 植物学报, 1991, 8(02): 60 -63 .
[10] 孙德兰 赵玉锦 苏秀珍. 用显微分光光度术测定莲子叶细胞中淀粉体DNA含量[J]. 植物学报, 1997, 14(01): 44 -47 .