Chinese Bulletin of Botany ›› 2021, Vol. 56 ›› Issue (4): 414-421.DOI: 10.11983/CBB20212
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Yigong Zhang1, Yi Zhang1, Ayibaiheremu Mutailifu1, Daoyuan Zhang2,*()
Received:
2020-12-26
Accepted:
2021-05-08
Online:
2021-07-01
Published:
2021-06-30
Contact:
Daoyuan Zhang
Yigong Zhang, Yi Zhang, Ayibaiheremu Mutailifu, Daoyuan Zhang. Heterologous Overexpression of Desiccation-tolerance Moss ScABI3 Gene Changes Stomatal Phenotype and Improves Drought Resistance in Transgenic Arabidopsis[J]. Chinese Bulletin of Botany, 2021, 56(4): 414-421.
Figure 4 Stomata length (A) and width (B) of the transgenic Arabidopsis and wild type (WT) under mannitol treatment * indicate significant differences at P<0.05, ** indicate extremely significant differences at P<0.01.
Figure 5 The stomatal density and water use efficiency (WUE) in the transgenic Arabidopsis and wild type (WT) (A) Stomatal number of transgenic (left) Arabidopsis and WT (right); (B) Stomatal number statistics of the transgenic Arabidopsis and WT; (C) WUE of transgenic Arabidopsis and WT under mannitol treatment. The red arrows indicate stomatas; * indicate significant differences at P<0.05, ** indicate extremely significant differences at P<0.01. (A) Bars=10 μm
Figure 6 The content of ABA in the transgenic Arabidopsis and wild type (WT) under mannitol treatment ** indicate extremely significant differences at P<0.01.
Figure 7 Comparisons of the transgenic Arabidopsis and wild type (WT) under drought stress Phenotype (A), survival rate (B), water loss rate (C) and the phenotype of water loss to detached leaves (D) of the transgenic plant and WT under drought stress. * indicate significant differences at P<0.05. (A) Bars=2 cm; (D) Bars=10 mm
Figure 8 Physiological indicators of the transgenic Arabidopsis and wild type (WT) under mannitol stress (A) Superoxide dismutase (SOD) activity; (B) Peroxidase (POD) activity; (C) H2O2 contents; (D) Malondialdehyde (MDA) contents. * indicate significant differences at P<0.05, ** indicate extremely significant differences at P<0.01.
[1] | 王宏亮, 郭思义, 王棚涛, 宋纯鹏 (2018). 植物气孔发育机制研究进展. 植物学报 53, 164-174. |
[2] |
王雅静, 张欣莹, 黄桂荣, 刘晓英, 郭瑞, 顾峰雪, 钟秀丽, 梅旭荣 (2019). 植物磷脂酸的特性及其在ABA诱导气孔运动中的作用. 植物学报 54, 245-254.
DOI |
[3] |
Bedi S, Sengupta S, Ray A, Nag Chaudhuri R (2016). ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes. Plant Sci 250, 125-140.
DOI URL |
[4] |
Brady SM, Sarkar SF, Bonetta D, McCourt P (2003). The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34, 67-75.
DOI URL |
[5] |
Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2020). Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62, 25-54.
DOI URL |
[6] |
Duff RJ, Oliver MJ, Wood AJ (1999). A Tortula ruralis cDNA encoding small-subunit ribosomal protein S3a: polysomal retention of transcript in response to desiccation and rehydration. Bryologist 102, 418-425.
DOI URL |
[7] |
Khandelwal A, Cho SH, Marella H, Sakata Y, Perroud PF, Pan A, Quatrano RS (2010). Role of ABA and ABI3 in desiccation tolerance. Science 327, 546.
DOI PMID |
[8] |
Marella HH, Sakata Y, Quatrano RS (2006). Characterization and functional analysis of ABSCISIC ACID INSENSITIVE3-like genes from Physcomitrella patens. Plant J 46, 1032-1044.
DOI URL |
[9] |
Mittal A, Gampala SSL, Ritchie GL, Payton P, Burke JJ, Rock CD (2014). Related to ABA-insensitive3 (ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J 12, 578-589.
DOI URL |
[10] |
Mönke G, Seifert M, Keilwagen J, Mohr M, Grosse I, Hähnel U, Junker A, Weisshaar B, Conrad U, Bäumlein H, Altschmied L (2012). Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res 40, 8240-8254.
DOI URL |
[11] |
Oliver MJ, Dowd SE, Zaragoza J, Mauget SA, Payton PR (2004). The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics 5, 89.
DOI URL |
[12] |
Pan Z, Pitt WG, Zhang YM, Wu N, Tao Y, Truscott TT (2016). The upside-down water collection system of Syntrichia caninervis. Nat Plants 2, 16076.
DOI URL |
[13] |
Rohde A, Prinsen E, De Rycke R, Engler G, Van Montagu M, Boerjan W (2002). PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell 14, 1885-1901.
DOI URL |
[14] |
Shinde S, Nurul Islam M, Ng CKY (2012). Dehydration stress-induced oscillations in LEA protein transcripts involves abscisic acid in the moss, Physcomitrella patens. New Phytol 195, 321-328.
DOI PMID |
[15] |
Tamminen I, Mäkelä P, Heino P, Palva ET (2001). Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. Plant J 25, 1-8.
PMID |
[16] |
Tanaka Y, Nose T, Jikumaru Y, Kamiya Y (2013). ABA inhibits entry into stomatal-lineage development in Arabidopsis leaves. Plant J 74, 448-457.
DOI URL |
[17] | Wood AJ, Oliver MJ (2004). Molecular biology and genomics of the desiccation tolerant moss Tortula ruralis. In: Wood AJ, Oliver MJ, Cove DJ, eds. New Frontiers in Bryology. Dordrecht: Springer. pp. 71-89. |
[18] |
Wu N, Zhang YM, Downing A, Zhang J, Yang CH (2012). Membrane stability of the desert moss Syntrichia caninervis Mitt. during desiccation and rehydration. J Bryol 34, 1-8.
DOI URL |
[19] |
Xia J, Wang XQ, Perroud PF, He YK, Quatrano R, Zhang WX (2016). Endogenous small-noncoding RNAs and potential functions in desiccation tolerance in Physcomitrella patens. Sci Rep 6, 30118.
DOI URL |
[20] |
Xiao LH, Yobi A, Koster KL, He YK, Oliver MJ (2018). Desiccation tolerance in Physcomitrella patens: rate of dehydration and the involvement of endogenous abscisic acid (ABA). Plant Cell Environ 41, 275-284.
DOI URL |
[21] |
Yotsui I, Serada S, Naka T, Saruhashi M, Taji T, Hayashi T, Quatrano RS, Sakata Y (2016). Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens. Biochem Biophys Res Commun 471, 589-595.
DOI URL |
[22] |
Yu H, Chen X, Hong YY, Wang Y, Xu P, Ke SD, Liu HY, Zhu JK, Oliver DJ, Xiang CB (2008). Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20, 1134-1151.
DOI PMID |
[23] |
Zhang J, Zhang YM, Downing A, Wu N, Zhang BC (2011). Photosynthetic and cytological recovery on remoistening Syntrichia caninervis Mitt., a desiccation-tolerant moss from Northwestern China. Photosynthetica 49, 13-20.
DOI URL |
[1] | Xingxin Liao, Yi Niu, Xingwu Duo, Akeyedeli Jumahazi, Marhaba Abdukuyum, Rizwangul Hufur, Haiyan Lan, Jing Cao. Heterologous Expression of Suaeda aralocaspica SaPEPC2 Gene Improves Drought Resistance and Photosynthesis in Transgenic Tobacco [J]. Chinese Bulletin of Botany, 2024, 59(4): 0-0. |
[2] | Heping Wang, Zhen Sun, Yuchen Liu, Yanlong Su, Jinyu Du, Yan Zhao, Hongbo Zhao, Zhaoming Wang, Feng Yuan, Yaling Liu, Zhenying Wu, Feng He, Chunxiang Fu. Sequence Identification and Functional Analysis of Cinnamyl Alcohol Dehydrogenase Gene from Agropyron mongolicum [J]. Chinese Bulletin of Botany, 2024, 59(2): 204-216. |
[3] | Yi Song, Hanghang Chen, Xin Cui, Zhifeng Lu, Shipeng Liao, Yangyang Zhang, Xiaokun Li, Rihuan Cong, Tao Ren, Jianwei Lu. Potassium Nutrient Status-mediated Leaf Growth of Oilseed Rape (Brassica napus) and Its Effect on Phyllosphere Microorganism [J]. Chinese Bulletin of Botany, 2024, 59(1): 54-65. |
[4] | WANG Jia-Yi, WANG Xiang-Ping, XU Cheng-Yang, XIA Xin-Li, XIE Zong-Qiang, FENG Fei, FAN Da-Yong. Response of hydraulic architecture in Fraxinus velutina street trees to the percentage of impervious pavement in Beijing [J]. Chin J Plant Ecol, 2023, 47(7): 998-1009. |
[5] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[6] | Wenqi Zhou, Yuqian Zhou, Yongsheng Li, Haijun He, Yanzhong Yang, Xiaojuan Wang, Xiaorong Lian, Zhongxiang Liu, Zhubing Hu. ZmICE2 Regulates Stomatal Development in Maize [J]. Chinese Bulletin of Botany, 2023, 58(6): 866-881. |
[7] | Lei Zhang, Pengfei Jiang, Yiming Wang, Ting Lan, Yanjing Liu, Qingyin Zeng. Comparative Study on the Drought Resistance of Young Seedling from Populus laurifolia × P. simonii F1 Progeny [J]. Chinese Bulletin of Botany, 2023, 58(4): 519-534. |
[8] | Zhou Yuping, Yan Jiahao, Tian Chang’en. Research Progress on the Regulatory Mechanisms of ABA Signal Transduction in Guard Cells [J]. Chinese Bulletin of Botany, 2022, 57(5): 684-696. |
[9] | Liu Xiaolong, Ji Ping, Yang Hongtao, Ding Yongdian, Fu Jialing, Liang Jiangxia, Yu Congcong. Priming Effect of Abscisic Acid on High Temperature Stress During Rice Heading-flowering Stage [J]. Chinese Bulletin of Botany, 2022, 57(5): 596-610. |
[10] | MA Yan-Ze, YANG Xi-Lai, XU Yan-Sen, FENG Zhao-Zhong. Response of key parameters of leaf photosynthetic models to increased ozone concentration in four common trees [J]. Chin J Plant Ecol, 2022, 46(3): 321-329. |
[11] | LUO Dan-Dan, WANG Chuan-Kuan, JIN Ying. Response mechanisms of hydraulic systems of woody plants to drought stress [J]. Chin J Plant Ecol, 2021, 45(9): 925-941. |
[12] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[13] | Chenyang Pan, Yue Zhang, Han Lin, Qianyu Chen, Kairu Yang, Jiaji Jiang, Mengjia Li, Tao Lu, Kexin Wang, Mei Lu, Sheng Wang, Hanfei Ye, Yuchun Rao, Haitao Hu. QTL Mapping and Candidate Gene Analysis on Rice Leaf Water Potential [J]. Chinese Bulletin of Botany, 2021, 56(3): 275-283. |
[14] | YANG Ke-Tong, CHANG Hai-Long, CHEN Guo-Peng, YU Xiao-Ya, XIAN Jun-Ren. Stomatal traits of main greening plant species in Lanzhou [J]. Chin J Plant Ecol, 2021, 45(2): 187-196. |
[15] | LI Tang-Ji, WANG Mao-Lin, CAO Ying, XU Gang, YANG Qi-Qi, REN Si-Yuan, HU Shang-Lian. Diurnal transpiration of bamboo culm and sheath and their potential effects on water transport during the bamboo shoot stage [J]. Chin J Plant Ecol, 2021, 45(12): 1365-1379. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||