Chinese Bulletin of Botany ›› 2025, Vol. 60 ›› Issue (6): 863-874.DOI: 10.11983/CBB24156 cstr: 32102.14.CBB24156
• RESEARCH ARTICLES • Previous Articles Next Articles
Yue Sun, Shujuan Guo, Huixian Zhao, Meng Ma, Xiangli Liu*(
)
Received:2024-10-17
Accepted:2025-03-18
Online:2025-11-10
Published:2025-03-18
Contact:
Xiangli Liu
Yue Sun, Shujuan Guo, Huixian Zhao, Meng Ma, Xiangli Liu. Cloning and Functional Analysis of the 14-3-3 Protein-encoding Gene TaGRF3-D in Wheat (Triticum aestivum)[J]. Chinese Bulletin of Botany, 2025, 60(6): 863-874.
| Primers | Primer sequence (5′-3′) | Primer usage |
|---|---|---|
| TaGRF3-D-F | ATGTCTACCGCTGAGGCAAC | TaGRF3-D gene cloning |
| TaGRF3-D-R | TCAGTGCCCCTCTCCCTCAG | |
| 1304-R | GTATCTTGAAAAGCATTGAACACC | Genomic PCR detection |
| Actin-F | TCGCTGACCGTATGAGCAAAG | Actin gene semi quantitative analysis |
| Actin-R | TGTGAACGATTCCTGGACCTG | |
| TaGRF3-D-RT-F | TCCTGAACTCTCCAGACCGT | TaGRF3-D gene semi quantitative analysis |
| TaGRF3-D-RT-R | CCTCTGCGTTATCGGAGGTC | |
| TaGRF3-D-BD-F | atggccatggaggccgaattcATGTCTACCGCTGAGGCAACC | BD-TaGRF3-D vector construction |
| TaGRF3-D-BD-R | ttatgcggccgctgcaggtcgacTCAGTGCCCCTCTCCCTCA |
Table 1 Primer information for TaGRF3-D gene cloning and vector construction
| Primers | Primer sequence (5′-3′) | Primer usage |
|---|---|---|
| TaGRF3-D-F | ATGTCTACCGCTGAGGCAAC | TaGRF3-D gene cloning |
| TaGRF3-D-R | TCAGTGCCCCTCTCCCTCAG | |
| 1304-R | GTATCTTGAAAAGCATTGAACACC | Genomic PCR detection |
| Actin-F | TCGCTGACCGTATGAGCAAAG | Actin gene semi quantitative analysis |
| Actin-R | TGTGAACGATTCCTGGACCTG | |
| TaGRF3-D-RT-F | TCCTGAACTCTCCAGACCGT | TaGRF3-D gene semi quantitative analysis |
| TaGRF3-D-RT-R | CCTCTGCGTTATCGGAGGTC | |
| TaGRF3-D-BD-F | atggccatggaggccgaattcATGTCTACCGCTGAGGCAACC | BD-TaGRF3-D vector construction |
| TaGRF3-D-BD-R | ttatgcggccgctgcaggtcgacTCAGTGCCCCTCTCCCTCA |
Figure 1 Structural analysis of the TaGRF3-A/B/D gene (A) and alignment of the amino acid sequences of TaGRF3-A/B/D with those of homologous proteins of other species (B) The black box in Figure B indicates the conserved domain of the 14-3-3 protein family.
Figure 5 PCR identification (A) and TaGRF3-D gene expression analysis (B) of the TaGRF3-D transgenic lines and the wild- type M: DL 2000 DNA marker; H2O: Blank control; WT: Wild type; Plasmid: pCAMBIA1304-TaGRF3-D; OE1-OE3: Transgenic lines
Figure 6 Analysis of the root length of the TaGRF3-D Arabidopsis thaliana transgenic lines under abscisic acid (ABA) and polyethylene glycol (PEG) treatment (A) Growth phenotype under ABA treatment; (B) Root length statistics under ABA treatment; (C) Growth phenotype under PEG treatment; (D) Root length statistics under PEG treatment. Different lowercase letters indicate significant differences (P<0.05) among the data according to the results of ANOVA analysis (n=3). WT: Wild type; Bars=1 cm
Figure 7 Phenotype (A) and survival rate (B) of the TaGRF3-D transgenic Arabidopsis thaliana and the wild type (WT) under drought stress Different lowercase letters indicate significant differences (P<0.05) among the data according to the results of ANOVA (n=3). Bars=1 cm
| [1] |
Aitken A (2006). 14-3-3 proteins: a historic overview. Semin Cancer Biol 16, 162-172.
DOI PMID |
| [2] |
Campo S, Peris-Peris C, Montesinos L, Peñas G, Messeguer J, San Segundo B (2012). Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. J Exp Bot 63, 983-999.
DOI URL |
| [3] |
Choi HI, Hong JH, Ha JO, Kang JY, Kim SY (2000). ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275, 1723-1730.
DOI PMID |
| [4] |
Fu HA, Subramanian RR, Masters SC (2000). 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40, 617-647.
PMID |
| [5] |
Gietz RD, Woods RA (2002). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350, 87-96.
PMID |
| [6] | Guo SJ, Sun Y, Zheng HY, Zhao HX, Ma M, Liu XL (2023). Genome-wide identification and expression analysis of ABF/AREB/ABI5 gene family in wheat (Triticum aestivum). J Agric Biotechnol 31, 667-681. (in Chinese) |
| 郭树娟, 孙月, 郑昊元, 赵惠贤, 马猛, 刘香利 (2023). 小麦ABF/AREB/ABI5基因家族全基因组鉴定与表达分析. 农业生物技术学报 31, 667-681. | |
| [7] | He Y, Zhang Y, Chen LH, Wu CL, Luo QC, Zhang F, Wei QH, Li KX, Chang JL, Yang GX, He GY (2017). A member of the 14-3-3 gene family in Brachypodium distachyon, BdGF14d, confers salt tolerance in transgenic tobacco plants. Front Plant Sci 8, 340. |
| [8] |
Ho SL, Huang LF, Lu CA, He SL, Wang CC, Yu SP, Chen J, Yu SM (2013). Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Mol Biol 81, 347-361.
DOI URL |
| [9] |
Huang Y, Wang WS, Yu H, Peng JH, Hu ZR, Chen L (2022). The role of 14-3-3 proteins in plant growth and response to abiotic stress. Plant Cell Rep 41, 833-852.
DOI |
| [10] |
Jiang W, Tong T, Li W, Huang ZH, Chen G, Zeng FR, Riaz A, Amoanimaa-Dede H, Pan R, Zhang WY, Deng FL, Chen ZH (2023). Molecular evolution of plant 14-3-3 proteins and function of Hv14-3-3A in stomatal regulation and drought tolerance. Plant Cell Physiol 63, 1857-1872.
DOI URL |
| [11] |
Johnson RR, Shin M, Shen JQ (2008). The wheat PKABA1-interacting factor TaABF1 mediates both abscisic acid- suppressed and abscisic acid-induced gene expression in bombarded aleurone cells. Plant Mol Biol 68, 93-103.
DOI URL |
| [12] |
Kaundal A, Ramu VS, Oh S, Lee S, Pant B, Lee HK, Rojas CM, Senthil-Kumar M, Mysore KS (2017). GENERAL CONTROL NONREPRESSIBLE4 degrades 14-3-3 and the RIN4 complex to regulate stomatal aperture with implications on nonhost disease resistance and drought tolerance. Plant Cell 29, 2233-2248.
DOI URL |
| [13] |
Kobayashi F, Maeta E, Terashima A, Takumi S (2008). Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol Plant 134, 74-86.
DOI PMID |
| [14] |
Latz A, Becker D, Hekman M, Müller T, Beyhl D, Marten I, Eing C, Fischer A, Dunkel M, Bertl A, Rapp UR, Hedrich R (2007). TPK1, a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins. Plant J 52, 449-459.
DOI PMID |
| [15] |
Latz A, Mehlmer N, Zapf S, Mueller TD, Wurzinger B, Pfister B, Csaszar E, Hedrich R, Teige M, Becker D (2013). Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs). Mol Plant 6, 1274-1289.
DOI URL |
| [16] |
Li FF, Mei FM, Zhang YF, Li SM, Kang ZS, Mao HD (2020). Genome-wide analysis of the AREB/ABF gene lineage in land plants and functional analysis of TaABF3 in Arabidopsis. BMC Plant Biol 20, 558.
DOI |
| [17] |
Lu G, DeLisle AJ, de Vetten NC, Ferl RJ (1992). Brain proteins in plants: an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex. Proc Natl Acad Sci USA 89, 11490-11494.
PMID |
| [18] |
Ma YM, Wu ZY, Dong JF, Zhang SH, Zhao JL, Yang TF, Yang W, Zhou L, Wang J, Chen JS, Liu Q, Liu B (2023). The 14-3-3 protein OsGF14f interacts with OsbZIP23 and enhances its activity to confer osmotic stress tolerance in rice. Plant Cell 35, 4173-4189.
DOI URL |
| [19] |
Ren YR, Yang YY, Zhang R, You CX, Zhao Q, Hao YJ (2019). MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance. Plant Sci 288, 110219.
DOI URL |
| [20] |
Schoonheim PJ, Costa Pereira DD, De Boer AH (2009). Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signaling in barley (Hordeum vulgare) aleurone cells. Plant Cell Environ 32, 439-447.
DOI URL |
| [21] |
Shao WN, Chen W, Zhu XG, Zhou XY, Jin YY, Zhan C, Liu GS, Liu X, Ma DF, Qiao YL (2021). Genome-wide identification and characterization of wheat 14-3-3 genes unravels the role of TaGRF6-A in salt stress tolerance by binding MYB transcription factor. Int J Mol Sci 22, 1904.
DOI URL |
| [22] | Shen YX (2018). Identification and Expression Analysis of the 14-3-3 Gene Family in Triticum aestivum (L.). Master’s thesis. Yangling: Northwest A&F University. pp. 30-36. (in Chinese) |
| 申玉霞 (2018). 小麦14-3-3蛋白基因家族鉴定和表达分析. 硕士论文. 杨凌: 西北农林科技大学. pp. 30-36. | |
| [23] | Sun XL, Sun MZ, Jia BW, Chen C, Qin ZW, Yang KJ, Shen Y, Meiping Z, Mingyang C, Zhu YM (2015). A 14-3-3 family protein from wild soybean (Glycine soja) regulates ABA sensitivity in Arabidopsis. PLoS One 10, e0146163. |
| [24] |
Yang L, You J, Wang YP, Li JZ, Quan WL, Yin MZ, Wang QF, Chan ZL (2017). Systematic analysis of the G-box factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon. Plant Physiol Biochem 117, 1-11.
DOI URL |
| [25] |
Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1, 641-646.
DOI |
| [26] |
Zhang Y, He Y, Zhao HY, Wang Y, Wu CL, Zhao YZ, Xue HN, Zhu QD, Zhang JL, Ou XQ (2024). The 14-3-3 protein BdGF14a increases the transcriptional regulation activity of BdbZIP62 to confer drought and salt resistance in tobacco. Plants 13, 245.
DOI URL |
| [27] |
Zhang Y, He Y, Zhao HY, Zhang Y, Yang J, Ou XQ, Zhang JL, Zhu QD (2023). A 14-3-3 protein-encoding gene, BdGF14g, confers better drought tolerance by regulating ABA biosynthesis and signaling. Plants 12, 3975.
DOI URL |
| [28] |
Zhang Y, Zhao HY, Zhou SY, He Y, Luo QC, Zhang F, Qiu D, Feng JL, Wei QH, Chen LH, Chen MJ, Chang JL, Yang GX, He GY (2018). Expression of TaGF14b, a 14-3- 3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco. Planta 248, 117-137.
DOI PMID |
| [29] |
Zhao X, Li F, Li K (2021). The 14-3-3 proteins: regulators of plant metabolism and stress responses. Plant Biol 23, 531-539.
DOI URL |
| [30] | Zhou Y, Li BY, Li XB (2012). Roles of 14-3-3 proteins in regulating plant development. Chin Bull Bot 47, 55-64. (in Chinese) |
|
周颖, 李冰樱, 李学宝 (2012). 14-3-3蛋白对植物发育的调控作用. 植物学报 47, 55-64.
DOI |
| [1] | ZHANG Bin, ZHANG Hao-Cheng, QIAO Tian, LÜ Zhi-Bing, XU Ya-Nan, LI Xue-Qin, YUAN Xiang-Yang, FENG Mei-Chen, ZHANG Mei-Jun. Effect of arbuscular mycorrhizal fungi inoculation on non-structural carbohydrates and C, N and P stoichiometry in oat plants under drought stress [J]. Chin J Plant Ecol, 2025, 49(7): 1082-1095. |
| [2] | Bei Fan, Min Ren, Yanfeng Wang, Fengfeng Dang, Guoliang Chen, Guoting Cheng, Jinyu Yang, Huiru Sun. Functions of SlWRKY45 in Response to Low-temperature and Drought Stress in Tomato [J]. Chinese Bulletin of Botany, 2025, 60(2): 186-203. |
| [3] | LONG Ji-Lan, JIANG Zheng, LIU Ding-Qin, MIAO Yu-Xuan, ZHOU Ling-Yan, FENG Ying, PEI Jia-Ning, LIU Rui-Qiang, ZHOU Xu-Hui, FU Yu-Ling. Effects of drought on plant root exudates and associated rhizosphere priming effect: review and prospect [J]. Chin J Plant Ecol, 2024, 48(7): 817-827. |
| [4] | Laipeng Zhao, Baike Wang, Tao Yang, Ning Li, Haitao Yang, Juan Wang, Huizhuan Yan. Investigation of the Regulation of Drought Tolerance by the SlHVA22l Gene in Tomato [J]. Chinese Bulletin of Botany, 2024, 59(4): 558-573. |
| [5] | Zhang Yingchuan, Wu Xiaomingyu, Tao Baolong, Chen Li, Lu Haiqin, Zhao Lun, Wen Jing, Yi Bin, Tu Jinxing, Fu Tingdong, Shen Jinxiong. Bna-miR43 Mediates the Response of Drought Tolerance in Brassica napus [J]. Chinese Bulletin of Botany, 2023, 58(5): 701-711. |
| [6] | CHEN Tu-Qiang, XU Gui-Qing, LIU Shen-Si, LI Yan. Hydraulic traits adjustments and nonstructural carbohydrate dynamics of Haloxylon ammodendron under drought stress [J]. Chin J Plant Ecol, 2023, 47(10): 1407-1421. |
| [7] | ZHOU Jie, YANG Xiao-Dong, WANG Ya-Yun, LONG Yan-Xin, WANG Yan, LI Bo-Rui, SUN Qi-Xing, SUN Nan. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought [J]. Chin J Plant Ecol, 2022, 46(9): 1064-1076. |
| [8] | Jiayi Kuang, Hongqing Li, Wenjin Shen, Caiji Gao. Methods for TurboID-based Proximal Labeling in Plants [J]. Chinese Bulletin of Botany, 2021, 56(5): 584-593. |
| [9] | Yongmei Che, Yanjun Sun, Songchong Lu, Lixia Hou, Xinxin Fan, Xin Liu. AtMYB77 Involves in Lateral Root Development via Regulating Nitric Oxide Biosynthesis under Drought Stress in Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2021, 56(4): 404-413. |
| [10] | Jiaxin Li, Xia Li, Yinfeng Xie. Mechanism on Drought Tolerance Enhanced by Exogenous Trehalose in C4-PEPC Rice [J]. Chinese Bulletin of Botany, 2021, 56(3): 296-314. |
| [11] | Ningxi Song, Yingfeng Xie, Xia Li. Effects of Epigenetic Mechanisms on C4 Phosphoenolpyruvate Carboxylase Transgenic Rice (Oryza sativa) Seed Germination Under Drought Stress [J]. Chinese Bulletin of Botany, 2020, 55(6): 677-692. |
| [12] | LIU Li-Yan, FENG Jin-Xia, LIU Wen-Xin, WAN Xian-Chong. Effects of drought stress on photosynthesis, growth and root structure of transgenic PtPIP2;8 poplar 84K (Populus alba × P. glandulosa) [J]. Chin J Plant Ecol, 2020, 44(6): 677-686. |
| [13] | LUO Jin-Huan, TAN Zhao-Yuan, CHEN Bin, CHEN Guang-Wu, JIANG Kai, HEI Qi-Fang, ZHANG Hui. Key characteristics for facilitating Leucaena leucocephala to successfully invade pioneer communities of tropical rain forests [J]. Chin J Plant Ecol, 2020, 44(12): 1215-1223. |
| [14] | Chongyi Xu. Pull-down and Co-immunoprecipitation Assays of Interacting Proteins in Plants [J]. Chinese Bulletin of Botany, 2020, 55(1): 62-68. |
| [15] | Yan Zhao,Jianmin Zhou. Luciferase Complementation Assay for Detecting Protein Interactions [J]. Chinese Bulletin of Botany, 2020, 55(1): 69-75. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||