Chinese Bulletin of Botany ›› 2018, Vol. 53 ›› Issue (5): 578-580.DOI: 10.11983/CBB18052

• COMMENTARY • Previous Articles     Next Articles

The Mechanism of Metabolite Changes in Tomato Breeding by a Multi-Omics Approach

Ma Aimin1,2, Qi Xiaoquan1,*()   

  1. 1Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-03-02 Accepted:2018-05-01 Online:2018-09-01 Published:2018-11-29
  • Contact: Qi Xiaoquan
  • About author:

    † These authors contributed equally to this paper

Abstract: Domestication, improvement, divergence and introgression are the major stages in the history of tomato breeding. During this period, both fruit weight and quality of tomato were significantly changed; however, the variation in metabolites and the genetic basis remain unknown. Recently, researchers revealed the metabolome changes in tomato breeding by using a multi-omics dataset. The content of 46 steroidal glycoalkaloids (SGAs) declined during tomato domestication, and 7 major loci were identified for 44 of 46 compounds. Pyramiding of these high-value loci significantly reduced the SGAs content. The linkage drag of fruit weight genes and nearby genes might result from altered metabolite profiles during the selection for larger fruits, and the selection for one trait might affect other traits. This work systematically analyzed the effects of selection on crop metabolites by a multi-omics approach, which lays the foundation for tomato quality improvement.

Key words: metabolites, multi-omics, tomato