Chinese Bulletin of Botany ›› 2023, Vol. 58 ›› Issue (2): 285-297.DOI: 10.11983/CBB22034
• TECHNIQUES AND METHODS • Previous Articles Next Articles
Received:
2022-02-23
Accepted:
2022-09-07
Online:
2023-03-01
Published:
2023-03-15
Contact:
*E-mail: Jindan Zhang, Min Feng. A Plant Sample Optimal Pretreatment for Flow Cytometric Analysis[J]. Chinese Bulletin of Botany, 2023, 58(2): 285-297.
Figure1 Histograms of relative nuclear DNA content in soybean leaves nuclear suspensions treated with different concentration of tannic acid (TA) Samples were prepared with different isolation buffers adding different concentrations of tannic acid, and treated on ice for 15 min. After stained with Propidium Iodide (PI), relative nuclear DNA content of samples were measured with a LSRFortessa flow cytometer. (A)-(D) PVPK12-mGB2 (with 1% PVPK12); (E)-(H) PVPK17-mGB2; (I)-(L) PVPK30-mGB2; (M)-(P) PVPK12-mGB2 (with 2% PVPK12); (Q)-(T) WPB. PI-A: PI-area
TA (mg?mL-1) | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 2 | 3 | 4 | |||||
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
PVPK12-mGB2 (with 1% PVPK12) | 3.70±0.17 | 27.37±1.76 | 4.37±0.46 | 30.63±4.40 | 4.47±0.25 | 52.43±10.00 | 6.23±0.15 | 79.37±5.56 |
PVPK17-mGB2 | 3.30±0.10 | 30.67±2.12 | 3.90±0.35 | 51.77±6.20 | 5.10±0.17 | 70.80±1.04 | 7.70±0.70 | 87.33±0.71 |
PVPK30-mGB2 | 3.47±0.32 | 27.93±1.77 | 3.63±0.25 | 41.00±8.66 | 5.70±0.46 | 82.73±3.07 | 7.30±0.17 | 88.93±3.90 |
PVPK12-mGB2 (with 2% PVPK12) | 3.47±0.06 | 30.73±0.95 | 3.67±0.06 | 41.83±11.98 | 4.10±0.10 | 42.67±3.09 | 3.83±0.15 | 38.20±6.28 |
WPB | 4.50±0.17 | 48.27±0.32 | 4.60±0.30 | 47.63±4.21 | 5.17±0.32 | 50.20±5.97 | 6.07±0.06 | 47.07±5.83 |
Table1 Effectiveness of relative nuclear DNA prepared from Glycine max leaf tissue with different isolation buffers exposed to different concentration of tannic acid (TA)
TA (mg?mL-1) | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 2 | 3 | 4 | |||||
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
PVPK12-mGB2 (with 1% PVPK12) | 3.70±0.17 | 27.37±1.76 | 4.37±0.46 | 30.63±4.40 | 4.47±0.25 | 52.43±10.00 | 6.23±0.15 | 79.37±5.56 |
PVPK17-mGB2 | 3.30±0.10 | 30.67±2.12 | 3.90±0.35 | 51.77±6.20 | 5.10±0.17 | 70.80±1.04 | 7.70±0.70 | 87.33±0.71 |
PVPK30-mGB2 | 3.47±0.32 | 27.93±1.77 | 3.63±0.25 | 41.00±8.66 | 5.70±0.46 | 82.73±3.07 | 7.30±0.17 | 88.93±3.90 |
PVPK12-mGB2 (with 2% PVPK12) | 3.47±0.06 | 30.73±0.95 | 3.67±0.06 | 41.83±11.98 | 4.10±0.10 | 42.67±3.09 | 3.83±0.15 | 38.20±6.28 |
WPB | 4.50±0.17 | 48.27±0.32 | 4.60±0.30 | 47.63±4.21 | 5.17±0.32 | 50.20±5.97 | 6.07±0.06 | 47.07±5.83 |
Figure 2 Histograms of relative nuclear DNA content in fresh herbaceous plant leaves Samples were prepared with isolation buffers PVPK12-mGB2 (with 1% PVPK12), LB01 and CyStain? PI Absolute P, and treated on ice for 15 min. After stained with Propidium Iodide (PI), relative nuclear DNA contents were measured using a LSRFortessa flow cytometer. (A) Capsicum annuum; (B) Oryza sativa; (C) Nicotiana tabacum; (D) Hosta plantaginea; (E) Salvia nemorosa; (F) Physostegia virginiana; (G) Ipomoea batatas; (H) Glycine max. PI-A: PI-area
Species | PVPK12-mGB2 (with 1% PVPK12) | LB01 | CyStain? PI Absolute P | |||
---|---|---|---|---|---|---|
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
Capsicum annuum | 2.47±0.15 | 28.13±6.05 | 2.93±0.15 | 28.60±2.33 | 2.53±0.23 | 25.07±5.35 |
Oryza sativa | 3.13±0.21 | 21.47±3.46 | 4.03±0.15 | 31.33±6.56 | 2.97±0.35 | 24.40±4.34 |
Nicotiana tabacum | 2.37±0.06 | 18.83±5.73 | 2.47±0.06 | 15.90±3.04 | 2.50±0.17 | 17.07±2.81 |
Hosta plantaginea | 2.90±0.17 | 21.00±1.37 | 3.43±0.06 | 18.77±2.76 | 3.67±0.21 | 18.27±1.10 |
Salvia nemorosa | 3.30±0.10 | 27.40±1.18 | 3.80±0.20 | 19.00±4.54 | 3.23±0.21 | 20.83±2.00 |
Physostegia virginiana | 2.63±0.15 | 31.20±5.89 | 3.20±0.17 | 31.87±5.95 | 3.20±0.26 | 32.33±5.26 |
Ipomoea batatas | 3.57±0.06 | 31.73±3.78 | 4.53±0.65 | 30.33±1.57 | 4.97±0.55 | 28.77±2.59 |
Glycine max | 3.43±0.47 | 16.73±1.67 | 4.30±0.17 | 34.93±2.75 | 3.03±0.15 | 15.71±2.17 |
Table 2 Effectiveness of relative nuclear DNA of fresh herbaceous plant leaves with different isolation buffers
Species | PVPK12-mGB2 (with 1% PVPK12) | LB01 | CyStain? PI Absolute P | |||
---|---|---|---|---|---|---|
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
Capsicum annuum | 2.47±0.15 | 28.13±6.05 | 2.93±0.15 | 28.60±2.33 | 2.53±0.23 | 25.07±5.35 |
Oryza sativa | 3.13±0.21 | 21.47±3.46 | 4.03±0.15 | 31.33±6.56 | 2.97±0.35 | 24.40±4.34 |
Nicotiana tabacum | 2.37±0.06 | 18.83±5.73 | 2.47±0.06 | 15.90±3.04 | 2.50±0.17 | 17.07±2.81 |
Hosta plantaginea | 2.90±0.17 | 21.00±1.37 | 3.43±0.06 | 18.77±2.76 | 3.67±0.21 | 18.27±1.10 |
Salvia nemorosa | 3.30±0.10 | 27.40±1.18 | 3.80±0.20 | 19.00±4.54 | 3.23±0.21 | 20.83±2.00 |
Physostegia virginiana | 2.63±0.15 | 31.20±5.89 | 3.20±0.17 | 31.87±5.95 | 3.20±0.26 | 32.33±5.26 |
Ipomoea batatas | 3.57±0.06 | 31.73±3.78 | 4.53±0.65 | 30.33±1.57 | 4.97±0.55 | 28.77±2.59 |
Glycine max | 3.43±0.47 | 16.73±1.67 | 4.30±0.17 | 34.93±2.75 | 3.03±0.15 | 15.71±2.17 |
Figure 3 Histograms of relative nuclear DNA content in fresh woody plant leaves Samples were prepared with isolation buffers PVPK12-mGB2 (with 1% PVPK12), LB01 and CyStain? PI Absolute P, then stained with Propidium Iodide (PI), relative nuclear DNA contents were measured using a LSRFortessa flow cytometer. (A) Eucommia ulmoides; (B) Viburnum rhytidophyllum; (C) Yulania denudata; (D) Prunus virginiana; (E) Actinidia chinensis; (F) Lonicera japonica; (G) Metasequoia glyptostroboides; (H) Ginkgo biloba. PI-A: PI-area
Species | PVPK12-mGB2 (with 1% PVPK12) | LB01 | CyStain? PI Absolute P | |||
---|---|---|---|---|---|---|
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
Eucommia ulmoides | 3.57±0.25 | 60.93±5.85 | 5.53±0.15 | 68.40±2.75 | 3.57±0.40 | 68.70±4.56 |
Viburnum rhytidophyllum | 4.70±0.46 | 49.10±2.86 | 4.20±0.17 | 48.13±3.52 | 3.77±0.55 | 47.37±2.66 |
Yulania denudata | 2.93±0.32 | 28.60±0.57 | 4.57±0.90 | 47.90±4.45 | 4.10±0.57 | 27.77±2.90 |
Prunus virginiana | 3.40±0.30 | 49.80±4.17 | 3.80±0.35 | 49.53±6.08 | 4.23±0.45 | 44.77±3.93 |
Actinidia chinensis | 3.30±0.10 | 41.30±3.24 | 4.47±0.15 | 48.67±2.89 | 4.80±0.10 | 47.23±4.45 |
Lonicera japonica | 2.70±0.10 | 20.03±0.92 | 3.40±0.20 | 23.53±6.90 | 2.70±0.17 | 23.13±5.07 |
Metasequoia glyptostroboides | 2.87±0.31 | 27.83±1.59 | 5.37±0.50 | 29.40±1.76 | 3.53±0.21 | 26.20±3.22 |
Ginkgo biloba | 3.30±0.10 | 29.40±3.30 | 4.53±0.21 | 39.16±3.56 | 3.73±0.31 | 26.47±1.50 |
Table 3 Effectiveness of relative nuclear DNA of fresh woody plant leaves with different isolation buffers
Species | PVPK12-mGB2 (with 1% PVPK12) | LB01 | CyStain? PI Absolute P | |||
---|---|---|---|---|---|---|
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
Eucommia ulmoides | 3.57±0.25 | 60.93±5.85 | 5.53±0.15 | 68.40±2.75 | 3.57±0.40 | 68.70±4.56 |
Viburnum rhytidophyllum | 4.70±0.46 | 49.10±2.86 | 4.20±0.17 | 48.13±3.52 | 3.77±0.55 | 47.37±2.66 |
Yulania denudata | 2.93±0.32 | 28.60±0.57 | 4.57±0.90 | 47.90±4.45 | 4.10±0.57 | 27.77±2.90 |
Prunus virginiana | 3.40±0.30 | 49.80±4.17 | 3.80±0.35 | 49.53±6.08 | 4.23±0.45 | 44.77±3.93 |
Actinidia chinensis | 3.30±0.10 | 41.30±3.24 | 4.47±0.15 | 48.67±2.89 | 4.80±0.10 | 47.23±4.45 |
Lonicera japonica | 2.70±0.10 | 20.03±0.92 | 3.40±0.20 | 23.53±6.90 | 2.70±0.17 | 23.13±5.07 |
Metasequoia glyptostroboides | 2.87±0.31 | 27.83±1.59 | 5.37±0.50 | 29.40±1.76 | 3.53±0.21 | 26.20±3.22 |
Ginkgo biloba | 3.30±0.10 | 29.40±3.30 | 4.53±0.21 | 39.16±3.56 | 3.73±0.31 | 26.47±1.50 |
Figure 4 Histograms of relative nuclear DNA content of silica gel-desiccated plant leaves Samples were prepared with different isolation buffers PVPK12-mGB2 (with 1% PVPK12), LB01 and CyStain? PI Absolute P, then stained with Propidium Iodide (PI), and relative nuclear DNA contents were measured using a LSRFortessa flow cytometer. (A) Eucommia ulmoides; (B) Viburnum rhytidophyllum; (C) Yulania denudata; (D) Prunus virginiana; (E) Actinidia chinensis; (F) Lonicera japonica; (G) Metasequoia glyptostroboides; (H) Ginkgo biloba. PI-A: PI-area
Species | PVPK12-mGB2 (with 1% PVPK12) | LB01 | CyStain? PI Absolute P | |||
---|---|---|---|---|---|---|
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
Eucommia ulmoides | 4.40±0.17 | 63.30±2.41 | 6.70±0.26 | 45.77±6.25 | 4.23±0.55 | 44.13±7.17 |
Viburnum rhytidophyllum | 3.70±0.17 | 48.97±4.50 | 5.13±0.31 | 37.67±9.35 | 4.47±0.67 | 22.60±1.84 |
Yulania denudata | 3.50±0.10 | 33.70±3.87 | 3.80±0.36 | 29.47±3.86 | 5.70±0.82 | 16.70±3.58 |
Prunus virginiana | 3.30±0.10 | 23.97±3.07 | 4.40±0.10 | 32.13±1.23 | 5.07±0.55 | 25.97±4.05 |
Actinidia chinensis | 3.50±0.10 | 33.73±4.04 | 5.13±0.12 | 36.23±5.81 | 5.00±0.30 | 33.00±4.43 |
Lonicera japonica | 4.10±0.10 | 24.20±3.81 | 3.57±0.15 | 23.33±1.10 | 3.67±0.21 | 15.23±0.23 |
Metasequoia glyptostroboides | 7.20±1.14 | 46.57±2.87 | 19.27±0.68 | 37.97±3.04 | 8.93±1.33 | 29.63±2.70 |
Ginkgo biloba | 6.47±0.23 | 19.03±0.40 | 9.67±0.25 | 45.60±1.73 | 22.87±0.90 | 48.70±0.69 |
Table 4 Effectiveness of relative nuclear DNA of silica gel-desiccated woody plant leaves with different isolation buffers
Species | PVPK12-mGB2 (with 1% PVPK12) | LB01 | CyStain? PI Absolute P | |||
---|---|---|---|---|---|---|
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
Eucommia ulmoides | 4.40±0.17 | 63.30±2.41 | 6.70±0.26 | 45.77±6.25 | 4.23±0.55 | 44.13±7.17 |
Viburnum rhytidophyllum | 3.70±0.17 | 48.97±4.50 | 5.13±0.31 | 37.67±9.35 | 4.47±0.67 | 22.60±1.84 |
Yulania denudata | 3.50±0.10 | 33.70±3.87 | 3.80±0.36 | 29.47±3.86 | 5.70±0.82 | 16.70±3.58 |
Prunus virginiana | 3.30±0.10 | 23.97±3.07 | 4.40±0.10 | 32.13±1.23 | 5.07±0.55 | 25.97±4.05 |
Actinidia chinensis | 3.50±0.10 | 33.73±4.04 | 5.13±0.12 | 36.23±5.81 | 5.00±0.30 | 33.00±4.43 |
Lonicera japonica | 4.10±0.10 | 24.20±3.81 | 3.57±0.15 | 23.33±1.10 | 3.67±0.21 | 15.23±0.23 |
Metasequoia glyptostroboides | 7.20±1.14 | 46.57±2.87 | 19.27±0.68 | 37.97±3.04 | 8.93±1.33 | 29.63±2.70 |
Ginkgo biloba | 6.47±0.23 | 19.03±0.40 | 9.67±0.25 | 45.60±1.73 | 22.87±0.90 | 48.70±0.69 |
Materials | PVPK12-mGB2 (with 1% PVPK12) | CyStain? PI Absolute P | ||
---|---|---|---|---|
Genome size (Mb) | CV (%) | Genome size (Mb) | CV (%) | |
Fresh leaf | 276.82 | 2.83±0.74 | 281.80 | 3.43±0.32 |
Dry leaf | 280.54 | 3.80±0.10 | 282.54 | 4.00±0.30 |
Table 5 Estimation of genome size of Ficus carica leaf nuclear DNA with different nuclear isolation buffers
Materials | PVPK12-mGB2 (with 1% PVPK12) | CyStain? PI Absolute P | ||
---|---|---|---|---|
Genome size (Mb) | CV (%) | Genome size (Mb) | CV (%) | |
Fresh leaf | 276.82 | 2.83±0.74 | 281.80 | 3.43±0.32 |
Dry leaf | 280.54 | 3.80±0.10 | 282.54 | 4.00±0.30 |
Figure 5 Determination of Ephedra intermedia DNA ploidy Samples were prepared with different isolation buffers, then stained with Propidium Iodide (PI) and measured using a LSRFortessa flow cytometer (a: Ephedra equisetina; b: E. intermedia). (A) PVPK12-mGB2 (with 1% PVPK12); (B) LB01; (C) CyStain? PI Absolute P; (D) WPB. DI: DNA index; PI-A: PI-area
[1] | 陈西娟, 王成章, 叶建中 (2008). 银杏叶化学成分及其应用研究进展. 生物质化学工程 42(4), 57-62. |
[2] | 金永日, 桂明玉, 李绪文, 陆娟, 马场正树, 奥山徹, 徐吉庆 (2007). 狗枣猕猴桃叶化学成分研究. 高等学校化学学报 28, 2060-2064. |
[3] | 赖娟华, 徐丽瑛, 饶华, 李玉云 (2004). 杜仲叶化学成分和药理作用研究概况. 实用中西医结合临床 4(2), 67-68, 78. |
[4] | 李军集, 孟忠磊, 黎贵卿 (2012). 广西白玉兰花和叶片挥发油化学成分的GC/MS分析. 西南林业大学学报 32(6), 102-106. |
[5] | 马广莹, 史小华, 邹清成, 田丹青, 朱开元, 詹菁, 周江华 (2018). 8个玉簪品种幼叶的营养成分测定及品质分析. 浙江农业科学 59, 814-820. |
[6] | 潘秋文 (2004). 金银花叶的研究进展. 浙江中医学院学报 28(4), 90. |
[7] | 宋二颖, 雷荣爱 (1997). 水杉叶挥发油成分分析. 中药材 20, 514-515. |
[8] | 孙兴姣, 李红娇, 刘婷, 李骁 (2018). 麻黄属植物化学成分及临床应用的研究进展. 中国药事 32, 201-209. |
[9] | 王庆菊, 胡艳丽, 李晓磊, 王磊, 沈向 (2007). 紫叶稠李叶片不同叶序花青苷与化学成分的相关性. 山东农业大学学报(自然科学版) 38, 557-560. |
[10] | 吴忆微, 蒋立勤 (2013). 红薯叶功效成分及抗肿瘤作用研究进展. 中国食物与营养 19(12), 63-65. |
[11] | 邢全, 石雷, 刘保东, 崔洪霞, 张金政 (2004). 枇杷叶荚蓬叶片解剖结构及其生态学意义. 园艺学报 31, 526-528. |
12 | 严旭, 左艳春, 王红林, 李杨, 李影正, 寇晶, 周晓康, 唐祈林, 杜周和 (2021). 禾本科三倍体: 形成、鉴定与利用. 植物学报 56, 372-387. |
[13] |
Bainard JD, Husband BC, Baldwin SJ, Fazekas AJ, Gregory TR, Newmaster SG, Kron P (2011). The effects of rapid desiccation on estimates of plant genome size. Chromosome Res 19, 825-842.
DOI PMID |
[14] |
Bennett MD, Leitch IJ (2005). Plant genome size research: a field in focus. Ann Bot 95, 1-6.
DOI URL |
[15] | Bühler V (2005). Polyvinylpyrrolidone Excipients for Pharmaceuticals:Povidone, Crospovidone and Copovidone. Ber- lin, Heidelberg: Springer. pp. 5-124. |
[16] |
Čertner M, Lučanová M, Sliwinska E, Kolář F, Loureiro J (2022). Plant material selection, collection, preservation, and storage for nuclear DNA content estimation. Cytometry A 101, 737-748.
DOI URL |
[17] |
Chase MW, Hills HH (1991). Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40, 215-220.
DOI URL |
[18] |
Doležel J, Bartoš J (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95, 99-110.
DOI URL |
[19] |
Doležel J, Binarová P, Lucretti S (1989). Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31, 113-120.
DOI URL |
[20] |
Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983). Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049-1051.
DOI PMID |
[21] |
Galbraith DW, Lambert GM, Macas J, Dolezel J (2001). Analysis of nuclear DNA content and ploidy in higher plants. Curr Protoc Cytom doi: 10.1002/0471142956.cy-0706s02.
DOI |
[22] | Kabera JN, Semana E, Mussa AR, He X (2014). Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2, 377-392. |
[23] |
Loureiro J, Kron P, Temsch EM, Koutecký P, Lopes S, Castro M, Castro S (2021). Isolation of plant nuclei for estimation of nuclear DNA content: overview and best practices. Cytometry A 99, 318-327.
DOI URL |
[24] |
Loureiro J, Rodriguez E, Doležel J, Santos C (2006a). Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98, 515-527.
DOI URL |
[25] |
Loureiro J, Rodriguez E, Doležel J, Santos C (2006b). Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98, 679-689.
DOI URL |
[26] |
Loureiro J, Rodriguez E, Doležel J, Santos C (2007). Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100, 875-888.
DOI URL |
[27] |
Noirot M, Barre P, Duperray C, Louarn J, Hamon S (2003). Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in coffee tree. Ann Bot 92, 259-264.
DOI URL |
[28] |
Sadhu A, Bhadra S, Bandyopadhyay M (2016). Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers. Ann Bot 118, 1057-1070.
DOI URL |
[1] | Wei Ning, Jian Zhang, Zhigang Wu, Ming Ma, Xin Zhao, Tianlai Li. Characteristics of Obligate Apomixis in Dandelion (Taraxacum antungense) [J]. Chinese Bulletin of Botany, 2014, 49(4): 417-423. |
[2] | Haiying Li, Guirong Qiao, Mingying Liu, Jing Jiang, Ling Zhang, Renying Zhuo. Analysis of Ploidy in Dedrocalamus latiflorus Plants Obtained by Anther Culture [J]. Chinese Bulletin of Botany, 2011, 46(1): 74-78. |
[3] | Fei Li;Yong Hu;Fan Wang;Zhen Zhang;Xianglin Liu;Sulan Bai;Yikun He. orting of early developmental non-hair cells in root by flow cytometry in Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2010, 45(04): 460-465. |
[4] | Lubin Li;Jingyu Wu;Tao Hu;Xuewen Yang;Zhenhua Peng*. Estimation of Genome Size of Moso Bamboo (Phyllostachys edulis) [J]. Chinese Bulletin of Botany, 2008, 25(05): 574-578. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||