植物学报 ›› 2023, Vol. 58 ›› Issue (6): 893-904.DOI: 10.11983/CBB22231
王文静1,†, 朱钰1,†, 张洪铭1,2, 韦陆丹1, 易庆平3, 余晓敏1, 刘雨菡1, 张莉雪1, 程文翰3, 何燕红1,*()
收稿日期:
2022-10-03
接受日期:
2023-03-07
出版日期:
2023-11-01
发布日期:
2023-11-27
通讯作者:
* E-mail: hyh2010@mail.hzau.edu.cn
作者简介:
† 共同第一作者
基金资助:
Wenjing Wang1,†, Yu Zhu1,†, Hongming Zhang1,2, Ludan Wei1, Qingping Yi3, Xiaomin Yu1, Yuhan Liu1, Lixue Zhang1, Wenhan Cheng3, Yanhong He1,*()
Received:
2022-10-03
Accepted:
2023-03-07
Online:
2023-11-01
Published:
2023-11-27
Contact:
* E-mail: hyh2010@mail.hzau.edu.cn
About author:
† These authors contributed equally to this paper
摘要: 万寿菊(Tagetes erecta)是菊科万寿菊属重要的观赏花卉, 其舌状花花冠边缘的类型有平滑(smooth)、波浪(undulate)及不同程度的缺刻(incision)等。以第1轮小花花冠筒边缘五裂且雄蕊发育正常的万寿菊突变体JH和舌状花花冠边缘平滑且雄蕊败育的万寿菊自交系S5为亲本构建F2代分离群体。遗传分析表明, JH突变性状由显性单基因控制, 将其命名为Telf。组织学和细胞学观察发现JH第1轮小花为舌状花管瓣化, 其花冠筒顶部具有5个裂片, 中下部融合呈管状, 且花药和花粉粒发育恢复正常。利用BSR-seq和比较基因组学方法, 将控制舌状花花冠裂片形成的基因Telf定位于37003-SCAR标记和34032-CAPS标记之间, 2个标记距Telf的遗传距离分别为3.684 cM和3.517 cM。该研究为后续精细定位目的基因Telf奠定了基础, 也为万寿菊分子标记开发提供了新方法。
王文静, 朱钰, 张洪铭, 韦陆丹, 易庆平, 余晓敏, 刘雨菡, 张莉雪, 程文翰, 何燕红. 万寿菊舌状花花冠裂片突变体的形态鉴定及连锁标记开发. 植物学报, 2023, 58(6): 893-904.
Wenjing Wang, Yu Zhu, Hongming Zhang, Ludan Wei, Qingping Yi, Xiaomin Yu, Yuhan Liu, Lixue Zhang, Wenhan Cheng, Yanhong He. Morphological Identification and Development of Linkage Markers for Lobed Ray Floret Mutants in Marigold (Tagetes erecta). Chinese Bulletin of Botany, 2023, 58(6): 893-904.
图1 万寿菊S5和JH的F2代群体构建及舌状花花冠裂片性状分离 Pi: 雌蕊; St: 雄蕊。Bars=1 cm
Figure 1 Construction of F2 population between marigold S5 and JH, and segregation of ray corolla traits in the F2 population Pi: Pistil; St: Stamen. Bars=1 cm
Unigene ID | Primer name | Forward primer (5'-3') | Reverse primer (5'-3') | Restriction enzyme |
---|---|---|---|---|
T01.PB44152 | 44152-CAPS | GTCAGCATGGGAATTCTACTGTTGG | CCATTTATAGCTGGAAAACAACCCG | DraI |
T01.PB49370 | 49370-CAPS | TCGTCTCCACCATAACCACCGC | CTCAACTTTATCCGCGCCAATA | XhoI |
T01.PB23497 | 23497-CAPS | TTCGTCCAAACCCAGATATGCTTAT | ACCAACCGACAAGTACGATTCGTAT | XbaI |
T01.PB40376 | 40376-CAPS | GTGTGCGTCTCTGGCACCATCAT | TAAGTACCATTCTCCGACCCGCA | DraI |
T01.PB44341 | 44341-CAPS | CCAACCTTTTTGTGCTTGCTAAC | AAGTTCCAAGTCTGTTACTTCCATC | XbaI |
T01.PB36031 | 36031-CAPS | CGGTGACATTATGAACCTTGGACTG | CCCATAACAACAACTTAGTACCGTATT | EcoRI |
T01.PB21624 | 21624-CAPS | CCGAGCATATTGAATTTTGGGTTAT | AGGGAATGAGAAGAACAATGGTCGT | SalI |
T01.PB37003 | 37003-CAPS | TGACTCTTTCTATCGCAGAGCCACT | ATCCAGGTACAAGTCACATGTCTGT | EcoRI |
T01.PB34032 | 34032-CAPS | GAGGTCTGCTTGCTTTTATGAGTAC | GCAAATATGGGCTACAAAATTCTATT | EcoRI |
T01.PB26228 | 26228-CAPS | AATAGTCCAGCAGCAAAAGTTGGTC | GCTTTCAGTGAACCAAAGGATATGG | XbaI |
T01.PB17555 | 17555-CAPS | TGCTCATACATCCATCTCCGTCTTC | CAGCTTTCTTGAACGTGTCCCTAAC | XbaI |
T01.PB43155 | 43155-CAPS | GTATATGCTGCAACTCTGCCCAAAG | GGAACACGATCCATGTCAGGTG | EcoRI |
T01.PB17261 | 17261-CAPS | GAGAAATACGAACCGTTATGG | AACTAGTACAACATTTTAAACCTGG | EcoRI |
T01.PB40072 | 40072-CAPS | ATGCAGATGACCCTACAAATTACCT | GCCTCTATTCCTATTTTCTCCTACC | SalI |
表1 酶切扩增多态性序列(CAPS)标记引物
Table 1 Primers for amplified polymorphic sequences (CAPS) markers
Unigene ID | Primer name | Forward primer (5'-3') | Reverse primer (5'-3') | Restriction enzyme |
---|---|---|---|---|
T01.PB44152 | 44152-CAPS | GTCAGCATGGGAATTCTACTGTTGG | CCATTTATAGCTGGAAAACAACCCG | DraI |
T01.PB49370 | 49370-CAPS | TCGTCTCCACCATAACCACCGC | CTCAACTTTATCCGCGCCAATA | XhoI |
T01.PB23497 | 23497-CAPS | TTCGTCCAAACCCAGATATGCTTAT | ACCAACCGACAAGTACGATTCGTAT | XbaI |
T01.PB40376 | 40376-CAPS | GTGTGCGTCTCTGGCACCATCAT | TAAGTACCATTCTCCGACCCGCA | DraI |
T01.PB44341 | 44341-CAPS | CCAACCTTTTTGTGCTTGCTAAC | AAGTTCCAAGTCTGTTACTTCCATC | XbaI |
T01.PB36031 | 36031-CAPS | CGGTGACATTATGAACCTTGGACTG | CCCATAACAACAACTTAGTACCGTATT | EcoRI |
T01.PB21624 | 21624-CAPS | CCGAGCATATTGAATTTTGGGTTAT | AGGGAATGAGAAGAACAATGGTCGT | SalI |
T01.PB37003 | 37003-CAPS | TGACTCTTTCTATCGCAGAGCCACT | ATCCAGGTACAAGTCACATGTCTGT | EcoRI |
T01.PB34032 | 34032-CAPS | GAGGTCTGCTTGCTTTTATGAGTAC | GCAAATATGGGCTACAAAATTCTATT | EcoRI |
T01.PB26228 | 26228-CAPS | AATAGTCCAGCAGCAAAAGTTGGTC | GCTTTCAGTGAACCAAAGGATATGG | XbaI |
T01.PB17555 | 17555-CAPS | TGCTCATACATCCATCTCCGTCTTC | CAGCTTTCTTGAACGTGTCCCTAAC | XbaI |
T01.PB43155 | 43155-CAPS | GTATATGCTGCAACTCTGCCCAAAG | GGAACACGATCCATGTCAGGTG | EcoRI |
T01.PB17261 | 17261-CAPS | GAGAAATACGAACCGTTATGG | AACTAGTACAACATTTTAAACCTGG | EcoRI |
T01.PB40072 | 40072-CAPS | ATGCAGATGACCCTACAAATTACCT | GCCTCTATTCCTATTTTCTCCTACC | SalI |
图2 万寿菊S5和JH盛花期花器官的体式显微镜和扫描电镜观察
Figure 2 Stereomicroscope and scanning electron microscope observation of floral organs of marigold S5 and JH at full blooming stage
图3 万寿菊S5和JH盛花期4轮花器官的半薄切片横切面观察 Vb: 维管束; Bu-like: 泡状细胞; UE: 上表皮细胞; ML: 中层组织; LE: 下表皮细胞; Po: 花粉粒; Pa: 乳突细胞。Bars=25 μm
Figure 3 The observation of transverse semi-thin sections in four whorls floral organs of marigold S5 and JH at full blooming stage Vb: Vascular bundles; Bu-like: Bubble-like cells; UE: Upper epidermis; ML: Middle layer; LE: Lower epidermis; Po: Pollen grains; Pa: Papilla cells. Bars=25 μm
图4 万寿菊S5 (A-E)和JH (F-J)不同发育时期花蕾的体式显微镜观察 (A), (F) 1 mm花蕾; (B), (G) 1.5 mm花蕾; (C), (H) 2 mm花蕾; (D), (I) 3 mm花蕾; (E), (J) 4 mm花蕾。IP: 花序原基; RFP: 舌状花原基; DFP: 管状花原基; Disc-like: 类似管状花花冠; Ray-like: 类似舌状花花冠。Bars=200 μm
Figure 4 Stereomicroscope observation of floral buds of marigold S5 (A-E) and JH (F-J) at different developmental stages (A), (F) 1 mm buds; (B), (G) 1.5 mm buds; (C), (H) 2 mm buds; (D), (I) 3 mm buds; (E), (J) 4 mm buds. IP: Inflorescence primordium; RFP: Ray floret primordium; DFP: Disc floret primordium; Disc-like: Disc-like floret corolla; Ray-like: Ray-like floret corolla. Bars=200 μm
图5 万寿菊S5 (A-F)和JH (G-L)不同发育时期花蕾石蜡切片横切面 (A), (G) 0.5 mm花蕾; (B), (H) 1 mm花蕾; (C), (I) 1.5 mm花蕾; (D), (J) 2 mm花蕾; (E), (K) 3 mm花蕾; (F), (L) 4 mm花蕾。IP: 花序原基; RFP: 舌状花原基; DFP: 管状花原基; PaP: 冠毛原基; CoRP: 舌状花花冠原基; CoDP: 管状花花冠原基; StP: 雄蕊原基; PiP: 雌蕊原基; Pa: 冠毛; Co: 花冠; St: 雄蕊; Pi: 雌蕊。Bars=100 μm
Figure 5 The transverse section of paraffin sections of floral buds of marigold S5 (A-F) and JH (G-L) at different developmental stages (A), (G) 0.5 mm buds; (B), (H) 1 mm buds; (C), (I) 1.5 mm buds; (D), (J) 2 mm buds; (E), (K) 3 mm buds; (F), (L) 4 mm buds. IP: Inflorescence primordium; RFP: Ray floret primordium; DFP: Disc floret primordium; PaP: Pappus primordium; CoRP: Corolla primordium of ray floret; CoDP: Corolla primordium of disc floret; StP: Stamen primordium; PiP: Pistil primordium; Pa: Pappus; Co: Corolla; St: Stamen; Pi: Pistil. Bars=100 μm
S5-pool | JH-pool | F2-S5 | F2-JH | |
---|---|---|---|---|
Total reads | 75274490 | 93514368 | 68385858 | 74073254 |
Clean reads | 72943532 | 90821192 | 66109078 | 71708520 |
Total base | 11291173500 | 14027155200 | 10257878700 | 11110988100 |
Clean base | 10838757206 | 13499502354 | 9820452668 | 10648842550 |
GC content (%) | 42 | 43 | 43 | 43 |
Q20 (%) | 99.99 | 100 | 100 | 100 |
Q30 (%) | 99.57 | 99.63 | 99.47 | 99.55 |
表2 BSR-seq质量
Table 2 Quality of BSR-seq
S5-pool | JH-pool | F2-S5 | F2-JH | |
---|---|---|---|---|
Total reads | 75274490 | 93514368 | 68385858 | 74073254 |
Clean reads | 72943532 | 90821192 | 66109078 | 71708520 |
Total base | 11291173500 | 14027155200 | 10257878700 | 11110988100 |
Clean base | 10838757206 | 13499502354 | 9820452668 | 10648842550 |
GC content (%) | 42 | 43 | 43 | 43 |
Q20 (%) | 99.99 | 100 | 100 | 100 |
Q30 (%) | 99.57 | 99.63 | 99.47 | 99.55 |
图6 基于BSR-seq分析结果的万寿菊转录组与向日葵基因组同源基因比对散点图 灰点: 万寿菊基因在向日葵基因组中同源基因的位置; 彩色点: ΔSNP index≥0.3的万寿菊基因
Figure 6 Scatter diagram of homologous gene alignment between marigold transcriptome and sunflower genome based on the results of BSR-seq analysis Grey dots: Locations of homologous genes in marigold mapped to sunflower; Colorful dots: Unigenes in marigold with ΔSNP index≥0.3
Unigene ID | Primer name | Position | ΔSNP index | Mutant position | Mutant base |
---|---|---|---|---|---|
T01.PB44152 | 44152-CAPS | 32539231 | 0.873 | 2113 | A→T |
T01.PB49370 | 49370-CAPS | 50400088 | 0.763 | 144 | G→T |
T01.PB23497 | 23497-CAPS | 138318439 | 0.555 | 975 | A→G |
T01.PB40376 | 40376-CAPS | 158179471 | 0.751 | 402 | T→A |
T01.PB44341 | 44341-CAPS | 174818902 | 0.666 | 225 | T→C |
T01.PB36031 | 36031-CAPS | 176617357 | 0.715 | 1712 | A→G |
T01.PB21624 | 21624-CAPS | 189237745 | 0.630 | 220 | G→C |
T01.PB37003 | 37003-SCAR | 191264434 | 0.711 | 1054 | T→A |
T01.PB34032 | 34032-CAPS | 199916490 | 0.846 | 1138 | G→A |
T01.PB26228 | 26228-CAPS | 204195845 | 0.533 | 1471 | C→T |
T01.PB17555 | 17555-CAPS | 208494177 | 0.740 | 343 | C→T |
T01.PB43155 | 43155-CAPS | 210482932 | 0.653 | 1475 | T→C |
T01.PB17261 | 17261-CAPS | 238981210 | 0.553 | 1316 | A→C |
T01.PB40072 | 40072-CAPS | 250623369 | 0.555 | 2109 | C→T |
表3 与万寿菊舌状花花冠裂片相关的SNP位点信息
Table 3 The SNPs associated with lobes of ray florets in marigold
Unigene ID | Primer name | Position | ΔSNP index | Mutant position | Mutant base |
---|---|---|---|---|---|
T01.PB44152 | 44152-CAPS | 32539231 | 0.873 | 2113 | A→T |
T01.PB49370 | 49370-CAPS | 50400088 | 0.763 | 144 | G→T |
T01.PB23497 | 23497-CAPS | 138318439 | 0.555 | 975 | A→G |
T01.PB40376 | 40376-CAPS | 158179471 | 0.751 | 402 | T→A |
T01.PB44341 | 44341-CAPS | 174818902 | 0.666 | 225 | T→C |
T01.PB36031 | 36031-CAPS | 176617357 | 0.715 | 1712 | A→G |
T01.PB21624 | 21624-CAPS | 189237745 | 0.630 | 220 | G→C |
T01.PB37003 | 37003-SCAR | 191264434 | 0.711 | 1054 | T→A |
T01.PB34032 | 34032-CAPS | 199916490 | 0.846 | 1138 | G→A |
T01.PB26228 | 26228-CAPS | 204195845 | 0.533 | 1471 | C→T |
T01.PB17555 | 17555-CAPS | 208494177 | 0.740 | 343 | C→T |
T01.PB43155 | 43155-CAPS | 210482932 | 0.653 | 1475 | T→C |
T01.PB17261 | 17261-CAPS | 238981210 | 0.553 | 1316 | A→C |
T01.PB40072 | 40072-CAPS | 250623369 | 0.555 | 2109 | C→T |
CAPS markers | F2-S5 | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
36031-CAPS | * | * | * | * | ||||||||||||||||||||||||||
21624-CAPS | * | |||||||||||||||||||||||||||||
37003-SCAR | * | |||||||||||||||||||||||||||||
34032-CAPS | * | * | ||||||||||||||||||||||||||||
44152-CAPS | * | * | * | |||||||||||||||||||||||||||
49370-CAPS | * | * | * | |||||||||||||||||||||||||||
17555-CAPS | * | * | * | * | ||||||||||||||||||||||||||
43155-CAPS | * | * | * | * | ||||||||||||||||||||||||||
CAPS markers | F2-JH | |||||||||||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
36031-CAPS | * | * | ||||||||||||||||||||||||||||
21624-CAPS | * | |||||||||||||||||||||||||||||
37003-SCAR | ||||||||||||||||||||||||||||||
34032-CAPS | * | |||||||||||||||||||||||||||||
44152-CAPS | * | |||||||||||||||||||||||||||||
49370-CAPS | * | |||||||||||||||||||||||||||||
17555-CAPS | * | * | ||||||||||||||||||||||||||||
43155-CAPS | * | * |
表4 万寿菊8个基因的分子标记交换单株分布
Table 4 The individuals with the exchange of molecular markers for eight genes in marigold
CAPS markers | F2-S5 | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
36031-CAPS | * | * | * | * | ||||||||||||||||||||||||||
21624-CAPS | * | |||||||||||||||||||||||||||||
37003-SCAR | * | |||||||||||||||||||||||||||||
34032-CAPS | * | * | ||||||||||||||||||||||||||||
44152-CAPS | * | * | * | |||||||||||||||||||||||||||
49370-CAPS | * | * | * | |||||||||||||||||||||||||||
17555-CAPS | * | * | * | * | ||||||||||||||||||||||||||
43155-CAPS | * | * | * | * | ||||||||||||||||||||||||||
CAPS markers | F2-JH | |||||||||||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
36031-CAPS | * | * | ||||||||||||||||||||||||||||
21624-CAPS | * | |||||||||||||||||||||||||||||
37003-SCAR | ||||||||||||||||||||||||||||||
34032-CAPS | * | |||||||||||||||||||||||||||||
44152-CAPS | * | |||||||||||||||||||||||||||||
49370-CAPS | * | |||||||||||||||||||||||||||||
17555-CAPS | * | * | ||||||||||||||||||||||||||||
43155-CAPS | * | * |
图7 37003-SCAR标记(A)和34032-CAPS标记(B)在亲本和F2代群体中的PCR扩增结果 M: 2 000 bp marker; 1-10: 舌状花花冠无裂片以及无雄蕊的F2代单株; 11-20: 舌状花花冠有5个裂片以及有雄蕊的F2代单株, 其中11-15为纯合子, 16-20为杂合子。
Figure 7 PCR amplification results of 37003-SCAR marker (A) and 34032-CAPS marker (B) in parents and F2 population M: 2 000 bp marker; 1-10: Individuals of F2 with ray floret without lobes and stamens; 11-20: Individuals of F2 that have ray florets with five-lobed and stamens, of which 11-15 are homozygotes and 16-20 are heterozygotes.
[1] | 陈笛, 刘家亮, 孟祥春, 王小菁 (2006). 南美蟛蜞菊花的生长发育. 植物学通报 23, 37-43. |
[2] | 何燕红 (2010). 万寿菊雄性不育性状的遗传分析及其育种应用. 博士论文. 武汉: 华中农业大学. pp. 24-25. |
[3] | 夏伟康 (2020). 菊花转录因子CmCUC2和CmCUC3的功能分析. 硕士论文. 南京: 南京农业大学. pp. 50-51. |
[4] |
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. J Mol Biol 215, 403-410.
DOI PMID |
[5] |
Bar M, Ori N (2014). Leaf development and morphogenesis. Development 141, 4219-4230.
DOI PMID |
[6] |
Bar M, Ori N (2015). Compound leaf development in model plant species. Curr Opin Plant Biol 23, 61-69.
DOI PMID |
[7] |
Bello MA, Álvarez I, Torices R, Fuertes-Aguilar J (2013). Floral development and evolution of capitulum structure in Anacyclus (Anthemideae, Asteraceae). Ann Bot 112, 1597-1612.
DOI URL |
[8] |
Blein T, Hasson A, Laufs P (2010). Leaf development: what it needs to be complex. Curr Opin Plant Biol 13, 75-82.
DOI PMID |
[9] |
Bolger AM, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
DOI PMID |
[10] |
Broholm SK, Täehtiharju S, Laitinen RAE, Albert VA, Teeri TH, Elomaa P (2008). A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc Natl Acad Sci USA 105, 9117-9122.
DOI PMID |
[11] |
Chapman MA, Tang SX, Draeger D, Nambeesan S, Shaffer H, Barb JG, Knapp SJ, Burke JM (2012). Genetic analysis of floral symmetry in Van Gogh's sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae. PLoS Genet 8, e1002628.
DOI URL |
[12] |
Chen J, Shen CZ, Guo YP, Rao GY (2018). Patterning the Asteraceae capitulum: duplications and differential expression of the flower symmetry CYC2-like genes. Front Plant Sci 9, 551.
DOI PMID |
[13] |
Cheng PL, Liu YN, Yang YM, Chen H, Cheng H, Hu Q, Zhang ZX, Gao JJ, Zhang JX, Ding L, Fang WM, Chen SM, Chen FD, Jiang JF (2020). CmBES1 is a regulator of boundary formation in chrysanthemum ray florets. Hortic Res 7, 129.
DOI |
[14] |
Dadpour MR, Naghiloo S, Gohari G (2011). Inflorescence and floral ontogeny in Osteospermum ecklonis (Asteraceae). Botany 89, 605-614.
DOI URL |
[15] |
Dinneny JR, Yadegari R, Fischer RL, Yanofsky MF, Weigel D (2004). The role of JAGGED in shaping lateral organs. Development 131, 1101-1110.
DOI PMID |
[16] |
Endress PK, Matthews ML (2006). Elaborate petals and staminodes in eudicots: diversity, function, and evolution. Org Divers Evol 6, 257-293.
DOI URL |
[17] |
Fambrini M, Salvini M, Pugliesi C (2011). A transposon-mediate inactivation of a CYCLOIDEA-like gene originates polysymmetric and androgynous ray flowers in Helianthus annuus. Genetica 139, 1521-1529.
DOI PMID |
[18] |
Fu XH, Shan HY, Yao X, Cheng J, Jiang YC, Yin XF, Kong HZ (2022). Petal development and elaboration. J Exp Bot 73, 3308-3318.
DOI URL |
[19] |
Hase Y, Fujioka S, Yoshida S, Sun GQ, Umeda M, Tanaka A (2005). Ectopic endoreduplication caused by sterol alteration results in serrated petals in Arabidopsis. J Exp Bot 56, 1263-1268.
DOI URL |
[20] |
Hase Y, Tanaka A, Baba T, Watanabe H (2000). FRL1 is required for petal and sepal development in Arabidopsis. Plant J 24, 21-32.
PMID |
[21] |
Huang D, Li XW, Sun M, Zhang TX, Pan HT, Cheng TR, Wang J, Zhang QX (2016). Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium. Front Plant Sci 7, 1633.
PMID |
[22] |
Kalisz S, Ree RH, Sargent RD (2006). Linking floral symmetry genes to breeding system evolution. Trends Plant Sci 11, 568-573.
PMID |
[23] |
Kim M, Cui ML, Cubas P, Gillies A, Lee K, Chapman MA, Abbott RJ, Coen E (2008). Regulatory genes control a key morphological and ecological trait transferred between species. Science 322, 1116-1119.
DOI PMID |
[24] |
Laitinen RAE, Broholm S, Albert VA, Teeri TH, Elomaa P (2006). Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae). BMC Plant Biol 6, 11.
PMID |
[25] |
Li H, Durbin R (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
DOI PMID |
[26] |
Li ZQ, Xu YH (2022). Bulk segregation analysis in the NGS era: a review of its teenage years. Plant J 109, 1355-1374.
DOI URL |
[27] |
Liu SZ, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012). Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One 7, e36406.
DOI URL |
[28] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010). The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297-1303.
DOI PMID |
[29] |
Michelmore RW, Paran I, Kesseli RV (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88, 9828-9832.
DOI PMID |
[30] |
Ohno CK, Reddy GV, Heisler MGB, Meyerowitz EM (2004). The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development. Development 131, 1111-1122.
DOI URL |
[31] |
Panero JL, Freire SE, Ariza EL, Crozier BS, Barboza GE, Cantero JJ (2014). Resolution of deep nodes yields an improved backbone phylogeny and a new basal lineage to study early evolution of Asteraceae. Mol Phylogen Evol 80, 43-53.
DOI URL |
[32] |
Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E (2007). Evolution and development of inflorescence architectures. Science 316, 1452-1456.
DOI PMID |
[33] |
Sauret-Güeto S, Schiessl K, Bangham A, Sablowski R, Coen E (2013). JAGGED controls Arabidopsis petal growth and shape by interacting with a divergent polarity field. PLoS Biol 11, e1001550.
DOI URL |
[34] |
Shen CZ, Chen J, Zhang CJ, Rao GY, Guo YP (2021). Dysfunction of CYC2g is responsible for the evolutionary shift from radiate to disciform flowerheads in the Chrysanthemum group (Asteraceae: Anthemideae). Plant J 106, 1024-1038.
DOI URL |
[35] |
Song XB, Gao K, Fan GX, Zhao XG, Liu ZL, Dai SL (2018a). Quantitative classification of the morphological traits of ray florets in large-flowered chrysanthemum. HortScience 53, 1258-1265.
DOI URL |
[36] |
Song XB, Xu YH, Gao K, Fan GX, Zhang F, Deng CY, Dai SL, Huang H, Xin HG, Li YY (2020). High-density genetic map construction and identification of loci controlling flower-type traits in chrysanthemum (Chrysanthemum × morifolium Ramat.). Hortic Res 7, 108.
DOI |
[37] |
Song XB, Zhao XG, Fan GX, Gao K, Dai SL, Zhang MM, Ma CF, Wu XY (2018b). Genetic analysis of the corolla tube merged degree and the relative number of ray florets in chrysanthemum (Chrysanthemum × morifolium Ramat.). Sci Hortic 242, 214-224.
DOI URL |
[38] |
Tähtiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, Elomaa P (2012). Evolution and diversification of the CYC/TB1 gene family in Asteraceae—a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae). Mol Biol Evol 29, 1155-1166.
DOI PMID |
[39] |
Wang QJ, Zhang XN, Lin SN, Yang SZ, Yan XL, Bendahmane M, Bao MZ, Fu XP (2020). Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis. J Exp Bot 71, 1915-1927.
DOI URL |
[40] |
Wyatt R (1982). Inflorescence architecture: how flower number, arrangement, and phenology affect pollination and fruit-set. Am J Bot 69, 585-594.
DOI URL |
[41] |
Zhao YF, Zhang T, Broholm SK, Tähtiharju S, Mouhu K, Albert VA, Teeri TH, Elomaa P (2016). Evolutionary co-option of floral meristem identity genes for patterning of the flower-like Asteraceae inflorescence. Plant Physiol 172, 284-296.
DOI PMID |
[42] |
Zheng GH, Wei W, Li YP, Kan LJ, Wang FX, Zhang X, Li F, Liu ZC, Kang CY (2019). Conserved and novel roles of miR164-CUC2 regulatory module in specifying leaf and floral organ morphology in strawberry. New Phytol 224, 480-492.
DOI URL |
[1] | 左毅, 刘红兵, 杨志刚, 李彬, 向浩鑫, 朱纯真, 王雷. 基于全基因组关联分析筛选山桐子性别分子标记[J]. 植物学报, 2024, 59(3): 414-421. |
[2] | 余晓敏, 王亚琴, 刘雨菡, 易庆平, 程文翰, 朱钰, 段枫, 张莉雪, 何燕红. 根癌农杆菌介导万寿菊遗传转化体系的建立[J]. 植物学报, 2023, 58(5): 760-769. |
[3] | 李宏伟, 郑琪, 李滨, 李振声. 长穗偃麦草分子育种基础研究进展[J]. 植物学报, 2022, 57(6): 792-801. |
[4] | 谭文清, 陈军, 才宏伟. 黑麦草生物学研究进展[J]. 植物学报, 2022, 57(6): 802-813. |
[5] | 陈向向, 盖中帅, 翟军团, 徐劲东, 焦培培, 吴智华, 李志军. 中国西北地区天然胡杨群体遗传多样性及核心保护单元的构建[J]. 生物多样性, 2021, 29(12): 1638-1649. |
[6] | 张梦华, 张宪春. 中国薄叶卷柏复合群的物种划分[J]. 生物多样性, 2021, 29(12): 1607-1619. |
[7] | 王亚琴, 韦陆丹, 王文静, 刘宝骏, 张春玲, 张俊卫, 何燕红. 万寿菊再生体系的建立及优化[J]. 植物学报, 2020, 55(6): 749-759. |
[8] | 李媛媛, 刘超男, 王嵘, 罗水兴, 农寿千, 王静雯, 陈小勇. 分子标记在濒危物种保护中的应用[J]. 生物多样性, 2020, 28(3): 367-375. |
[9] | 张亚红,贾会霞,王志彬,孙佩,曹德美,胡建军. 滇杨种群遗传多样性与遗传结构[J]. 生物多样性, 2019, 27(4): 355-365. |
[10] | 赵颖, 马荣, 尹永香, 张志东, 田呈明. 新疆不同来源金黄壳囊孢的多样性[J]. 生物多样性, 2019, 27(10): 1122-1131. |
[11] | 朱宇佳, 焦凯丽, 罗秀俊, 冯尚国, 王慧中. 基于SSR分子标记的酸浆属植物亲缘关系研究[J]. 植物学报, 2018, 53(3): 305-312. |
[12] | 杨洁, 赫佳, 王丹碧, 施恩, 杨文宇, 耿其芳, 王中生. InDel标记的研究和应用进展[J]. 生物多样性, 2016, 24(2): 237-243. |
[13] | 郭琪, 郭大龙, 郭丽丽, 张琳, 侯小改. SSR分子标记在牡丹亲缘关系研究中的应用与研究进展[J]. 植物学报, 2015, 50(5): 652-664. |
[14] | 薛轶群, 宋凯, 范路生, 万迎朗, 林金星. pH敏感型荧光蛋白及其在植物细胞生物学中的应用[J]. 植物学报, 2015, 50(3): 394-404. |
[15] | 何长欢, 周玉, 王利繁, 张立. 尚勇保护区亚洲象种群数量评估和遗传多样性分析[J]. 生物多样性, 2015, 23(2): 202-209. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||