郝梦冉1, 2, 柳志勇1, 2, 孙艳艳1, 2, 孙明秀1, 2, 张静1, 2, 宋爱萍1, 2, 王海滨1, 2, 陈发棣1, 2, 王振兴1, 2*
收稿日期:2025-09-10
修回日期:2025-11-20
出版日期:2025-12-08
发布日期:2025-12-08
通讯作者:
王振兴
基金资助:
Received:2025-09-10
Revised:2025-11-20
Online:2025-12-08
Published:2025-12-08
Contact:
Zhenxing Wang
摘要: 芙蓉菊(Crossostephium chinense)为菊科芙蓉菊属多年生银叶植物, 作为典型的药赏兼用植物, 其表现出极强的环境适应性, 如耐盐、耐旱、抗虫, 是研究植物抗性机制和观赏性状遗传改良的重要材料。但芙蓉菊遗传转化体系尚不完善, 严重制约了其种质创新和功能基因组学研究的深入开展, 以及优异性状功能基因的挖掘与利用。该研究以芙蓉菊为实验材料, 通过组织培养和非组织培养的方法建立了发根农杆菌(Agrobacterium rhizogenes) K599介导的高效遗传转化体系。结果表明, 以茎段为外植体, 组织培养与非组织培养条件下的毛状根诱导率均可达18%; 而以无根苗为外植体, 在Wus2-IPT辅助下, 无需植物生长调节剂即可直接获得再生植株, 且毛状根诱导率提高至38.95%, 显著提升了转化效率与操作便捷性。该系统整合了Wus2-IPT发育调控模块和可视化报告基因RUBY, 实现了转基因毛状根的高效诱导与阳性材料的快速筛选, 突破了传统方法依赖植物生长调节剂和基因型限制的局限, 为芙蓉菊基因功能解析和种质创新提供了重要技术支撑, 并具有推广至其它菊科植物遗传改良的应用潜力。
郝梦冉, 柳志勇, 孙艳艳, 孙明秀, 张静, 宋爱萍, 王海滨, 陈发棣, 王振兴. 发根农杆菌介导的芙蓉菊高效遗传转化体系的建立. 植物学报, DOI: 10.11983/CBB25165.
Mengran Hao, Zhiyong Liu, Yanyan Sun, Mingxiu Sun, Jing Zhang, Aiping Song, Haibin Wang, Fadi Chen, Zhenxing Wang. Establishment of an Agrobacterium rhizogenes-mediated Genetic Transformation System in Crossostephium chinense. Chinese Bulletin of Botany, DOI: 10.11983/CBB25165.
| [1]陈雪鹃, 吴珏, 李雪珂, 孙明, 张启翔(2012).芙蓉菊组培快繁技术的研究..中南林业科技大学报, 32:100-104+127+151. [2]黄有军, 夏国华, 郑炳松, 黄坚钦, 邵香君(2007).芙蓉菊盐胁迫下的生长表现和生理响应..江西农业大学学报, /:389-392+408. [3]马曦, 张金睿, 庄红梅, 陈巍, 张蜜, 袁晓琪, 易小芳, 王聪聪, 王海云, 王燕(2025).发根农杆菌介导的芜菁高效遗传转化体系建立.园艺学报, 52:1389-1398. [4]吴琦, 王亚君, 赵琳, 杨秀伟, 马爱进(2017).芙蓉菊化学成分及其生物活性研究进展..药物评价研究, 40:1821-1827. [5]向太和, 王琳, 蒋欢, 田璟鸾(2011).发根农杆菌K599对菊花活体转化及其高效再生.园艺学报, 38:1365-1370. [6]谢晓婷, 黄巧宇, 温广超, 袁虎威, 何 漪, 闫道良, 黄坚钦, 王晓飞, 郑炳松(2022).非组培依赖的发根农杆菌介导的薄壳山核桃转化体系构建.果树学报, 39:131-140. [7]亓帅, 付建新, 王翊, 杨立文, 戴思兰(2014).甘菊下胚轴遗传转化体系的建立..分子植物育种, 12:356-362. [8]Bahramnejad B, Naji M, Bose R, Jha S(2019).A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation.Biotechnology Advances, 37:107405--. [9]Cao X, Xie H, Song M, Zhao L, Liu H, Li G, Zhu JK(2024).Simple method for transformation and gene editing in medicinal plants.Journal of Integrative Plant Biology, 66:17-19. [10]Clough SJ, Bent AF(1998).Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana.The plant journal, 16:735-743. [11]Fan Y, Xu F, Zhou H, Liu X, Yang X, Weng K, Lyu S(2020).A fast, simple, high efficient and one-step generation of composite cucumber plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation.Plant Cell, Tissue and Organ Culture (PCTOC), 141:207-216. [12]Gu Y, Qin Y, Hua S, Shi J, Yang C, Peng Y, Dong W(2025).Novel methods for genetic transformation of watermelon (Citrullus lanatus) without tissue culture via Agrobacterium rhizogenes.Molecular Breeding, 45:22--. [13]Ikeuchi M, Shibata M, Rymen B, Iwase A, Bagman AM, Watt L(2018).A gene regulatory network for cellular reprogramming in plant regeneration.Plant and Cell Physiology, 59:770-782. [14]Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN(2021).Hairy CRISPR: genome editing in plants using hairy root transformation.Plants, 11:51--. [15]Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj, J(2015).Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications.Biotechnology Advances, 33:1024-1042. [16]Kumar S, Prakash S, Kumari P, Sanan-Mishra N(2025).A robust in-vitro and ex-vitro Agrobacterium rhizogenes-mediated hairy root transformation system in mungbean for efficient visual screening of transformants using the RUBY reporter.BMC Plant Biology, 25:724--. [17]Liu L, Qu JH, Wang CY, Liu M, Zhang CM, Zhang XY, GuO C, Wu CG, Yang GD, Huang JG, Yan K, Shu HR, Zheng CC, Zhang SZ(2024).An efficient genetic transformation system mediated by Rhizobium rhizogenes in fruit trees based on the transgenic hairy root to shoot conversion.Plant Biotechnology Journal, 22:2093-2103. [18]Liu YH, Cai XQ, Ning K, Xu P(2024).An Efficient Hairy Root Transformation Method for Common Bean based on Petiole Explants.Legume Research, 47:8-13. [19]Li XX, Gao YH, Ma HW, Wang YQ, Bu T, Yin W, Xia XL, Wang HL(2025).Non-tissue culture genetic modifications for plant improvement.Plant Molecular Biology, 115:67--. [20]Li X, Bu F, Zhang M, Li Z, Zhang Y, Chen H, Zhang Y(2025).Enhancing nature' s palette through the epigenetic breeding of flower color in chrysanthemum.New Phytologist, 245:2117-2132. [21]Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho MJ, Gordon-Kamm W(2016).Morphogenic regulators Baby boom and Wuschel improve monocot transformation.The Plant Cell, 28:1998-2015. [22]Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF(2020).Plant gene editing through de novo induction of meristems.Nature biotechnology, 38:84-89. [23]Mayo KJ, Gonzales BJ, Mason HS(2006).Genetic transformation of tobacco NT1 cells with Agrobacterium tumefaciens.Nature protocols, 1:1105-1111. [24]Mei GG, Chen A, Wang YR, Li SQ, Wu MY, Hu YL, Liu X, Hou XL(2024).A simple and efficient in planta transformation method based on the active regeneration capacity of plants.Plant Communications, 5:/-/. [25]Sarkar S, Ghosh I, Roychowdhury D, Jha S(2018).The effects of rol genes of Agrobacterium rhizogenes on morphogenesis and secondary metabolite accumulation in medicinal plants. In Biotechnological approaches for medicinal and aromatic plants: Conservation, genetic improvement and utilization.Singapore: Springer Singapore, /:27-51. [26]Taak P, Tiwari S, Koul B(2020).Optimization of regeneration and Agrobacterium-mediated transformation of Stevia (Stevia rebaudiana Bertoni): a commercially important natural sweetener plant.Scientific reports, 10:16224--. [27]Tepfer D(1984).Genetic transformation of several species of higher plants by Agrobacterium rhizogenes: phenotypic consequences and sexual transmission of the transformed genotype and phenotype.Cell, 37:959-967. [28]Wang H, Cheng K, Li T, Lan X, Shen L, Zhao H, Lü S(2024).A Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation method of Idesia polycarpa and the generation of transgenic plants.Plants, 13:1791--. [29]Wang J, Liu S, Ma H, Tao Y, Feng S, Gong S, Zhang J, Zhou A(2020).Reliable and efficient Agrobacterium tumefaciens-mediated genetic transformation of Dianthus spiculifolius.Horticultural Plant Journal, 66:1998-204. [30]Wang Y, Yang X, Wang W, Wang Y, Chen X, Wu H, Gao ZY, Xu HH, Liu TK, Li Y, Xiao D, Liu WS, Hou XL, Wu H, Zhang CW(2025).Efficient genetic transformation and gene editing of Chinese cabbage using Agrobacterium rhizogenes.Plant Physiology, 1972:kiae543--. [31]Xin T, Tian H, Ma Y, Wang S, Yang L, LiX, Yang X(2022).Targeted creation of new mutants with compact plant architecture using CRISPR/Cas9 genome editing by an optimized genetic transformation procedure in cucurbit plants.Horticulture research, 9:uhab086--. [32]Yi X, Wang C, Yuan X, Zhang M, Zhang C, Qin T, Wang Y(2024).Exploring an economic and highly efficient genetic transformation and genome‐editing system for radish through developmental regulators and visible reporter.The Plant Journal, 120:1682-1692. [33].., :-. [34]Yi XF, Wang CC, Yuan XQ, Zhang M, Zhang CW, Qin TJ, Wang HY, Xu L, Liu LW, Wang Y(2024).Exploring an economic and highly efficient genetic transformation and genome‐editing system for radish through developmental regulators and visible reporter.The Plant Journal120(4), 1682-1692., :-. [35]Yu J, Deng S, Huang H, Mo J, Xu ZF, Wang Y(2023).Exploring the potential applications of the noninvasive reporter gene RUBY in plant genetic transformation.Forests, 141:637--. [36]Wang D, Zhong Y, Feng B, Qi X, Yan T, Liu J, Chen S(2023).The RUBY reporter enables efficient haploid identification in maize and tomato.Plant Biotechnology Journal, 21:1707-1715. [37]Zhao X, Meng Z, Wang Y, Chen W, Sun C, Cui B, Cui J, Yu M, Zeng Z, Guo S, Luo D, Cheng JQ, Zhang R, Cui H(2017).Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers.Nature plants, 3:956-964. [38]Zhong J, Guo YH, Chen JT, Cao H, Liu M, Guo ZY, Zhang QX, Sun M(2021).Volatiles inheriting from Crossostephium chinense act as repellent weapons against aphids in Chrysanthemum lavandulifolium cultivars.Industrial Crops and Products, 166:--. |
| [1] | 李婷婷, 闫志文, 崔媛媛, 郭昊松, 陈方军, 张倩倩, 刘晓芹. 一种高效花生遗传转化体系的建立与优化[J]. 植物学报, 2026, 61(1): 1-0. |
| [2] | 陈龙浩, 杨瑞娟, 苑筱一, 邢思年, 臧云, 吴凡, 张吉宇, 秦晓春, 刘文文, 付春祥. 白花草木樨毛状根高效基因组编辑体系的建立[J]. 植物学报, 2026, 61(1): 1-0. |
| [3] | 李晶晶, 李艳飞, 王安琪, 王佳颖, 邓成燕, 卢敏, 马剑英, 戴思兰. 菊花品种万代风光再生及遗传转化体系的建立[J]. 植物学报, 2025, 60(4): 597-610. |
| [4] | 曾文丹, 严华兵, 吴正丹, 尚小红, 曹升, 陆柳英, 肖亮, 施平丽, 程冬, 龙紫媛, 李婕宇. 发根农杆菌介导的野葛毛状根遗传转化体系[J]. 植物学报, 2025, 60(3): 425-434. |
| [5] | 李宇琛, 赵海霞, 姜希萍, 黄馨田, 刘亚玲, 吴振映, 赵彦, 付春祥. 根癌农杆菌介导的蒙古冰草稳定遗传转化体系建立[J]. 植物学报, 2024, 59(4): 600-612. |
| [6] | 陈佳欣, 梅浩, 黄彩翔, 梁宗原, 全依桐, 李东鹏, 布威麦尔耶姆·赛麦提, 李欣欣, 廖红. 利用转基因毛状根高效培育大豆嵌合植株的方法[J]. 植物学报, 2024, 59(1): 89-98. |
| [7] | 余晓敏, 王亚琴, 刘雨菡, 易庆平, 程文翰, 朱钰, 段枫, 张莉雪, 何燕红. 根癌农杆菌介导万寿菊遗传转化体系的建立[J]. 植物学报, 2023, 58(5): 760-769. |
| [8] | 杨澜, 刘雅, 项阳, 孙秀娟, 颜景畏, 张阿英. 谷子茎尖体外遗传转化体系的建立与优化[J]. 植物学报, 2021, 56(1): 71-79. |
| [9] | 徐悦,曹英萍,王玉,付春祥,戴绍军. 发根农杆菌介导的菠菜毛状根遗传转化体系的建立[J]. 植物学报, 2019, 54(4): 515-521. |
| [10] | 李俊华,刘世宇,李成龙,韩林林,董亚辉,张晓丽,赵喜亭,李明军. 铁棍山药微型块茎遗传转化体系的建立[J]. 植物学报, 2019, 54(1): 72-80. |
| [11] | 吴国栋, 修宇, 王华芳. 优化子叶节转化法培育大豆MtDREB2A转基因植株[J]. 植物学报, 2018, 53(1): 59-71. |
| [12] | 任如意, 薛巨坤, 国会艳, 魏继承. 北玄参毛状根诱导及其植株再生[J]. 植物学报, 2017, 52(6): 783-787. |
| [13] | 王大鹏, 唐嘉泽, 邵明成, 张文彪, 王华芳. 胡杨组织培养叶片及插穗毛状根发生[J]. 植物学报, 2017, 52(2): 210-217. |
| [14] | 施西子, 郭亚鹏, 施和平. 多效唑(PP333)对美洲商陆毛状根生长和商陆皂苷甲产生的影响[J]. 植物学报, 2016, 51(6): 801-806. |
| [15] | 赵喜亭, 蒋丽微, 王苗, 朱玉婷, 张文芳, 李明军. 怀黄菊间接体胚受体再生体系的建立及CmTGA1的遗传转化[J]. 植物学报, 2016, 51(4): 525-532. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||