王月†,
李彦婷†, 肖颖,
叶红霞, 陈舒曼, 欧阳寿强*
浙江师范大学生命科学学院, 金华 321004
收稿日期:
2025-07-21
修回日期:
2025-08-19
出版日期:
2025-09-05
发布日期:
2025-09-05
通讯作者:
欧阳寿强
基金资助:
浙江省自然科学基金(No.KYZ34423025)和国家自然科学基金面上项目(No.31972351)
Yue Wang†, Yanting Li†, Yin Xiao, Hongxia Ye, Shuman Chen, Shouqiang Ouyang*
School of Life Sciences, Zhejiang Normal University, Jinhua 321004
Received:
2025-07-21
Revised:
2025-08-19
Online:
2025-09-05
Published:
2025-09-05
Contact:
Shouqiang Ouyang
摘要: 番茄(Solanum lycopersicum)作为一种营养丰富的蔬菜作物, 在全球范围内被广泛种植。由尖孢镰刀菌番茄专化型(Fusarium oxysporum f.sp. lycopersici, Fol)引起的番茄枯萎病是一种土传真菌病害, 给全球番茄农业生产造成了极大的经济损失。Small RNA (sRNA)介导的DNA甲基化(RdDM)植物抗病分子机制研究备受关注, 但关于病原菌sRNA跨界调控宿主DNA甲基化介导番茄抗枯萎病的分子机制尚未见报道。本课题组前期研究结果表明, 尖孢镰刀菌的效应分子Fol-milR1在病原菌侵染过程中跨界转运至番茄体内, 并通过与SlyAGO4a结合挟持番茄免疫体系。在此基础上, 本研究结果进一步表明SlyAGO4a以负调控的方式参与番茄枯萎病的抗性; 利用全基因组甲基化测序及分子生物学手段鉴定到Solyc02g081370 (SlyFRG5)的甲基化水平与Fol-milR1与直接关联, 其甲基化类型以CG为主, 且发生在基因编码区内; SlyFRG5通过调控宿主ROS的积累参与番茄对枯萎病的免疫。综上所述, 本研究解析了Fol-milR1-SlyAGO4a-SlyFRG5功能模块介导番茄抗枯萎病的分子机制, 为探索番茄抗枯萎病品种的培育和品质改良提供新的思路。
王月, 李彦婷, 肖颖, 叶红霞, 陈舒曼, 欧阳寿强. Fol-milR1调控SlyFRG5甲基化水平介导番茄抗枯萎病免疫应答的功能解析. 植物学报, DOI: 10.11983/CBB25129.
Yue Wang, Yanting Li, Ying Xiao, Hongxia Ye, Shuman Chen, Shouqiang Ouyang. SlyFRG5 methylation level activated by Fol-milR1 mediates immune response against tomato wilt disease. Chinese Bulletin of Botany, DOI: 10.11983/CBB25129.
[1]Agorio A, Vera P(2007).ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis.Plant Cell, 19:3778-3790. [2]Baulcombe D(2004).RNA silencing in plants.Nature, 431:356-363. [3]Baxter A, Mittler R, Suzuki N(2014).ROS as key players in plant stress signalling.J Exp Bot., 65:1229-1240. [4]Bhattacharjee S, Zamora A, Azhar MT, Sacco MA, Lambert LH, Moffett P(2009).Virus resistance induced by NB-LRR proteins involves Argonaute4-dependent translational control.Plant J., 58:940-951. [5]Cao D, Ju Z, Gao C, Mei X, Fu D, Zhu H, Luo Y, Zhu B(2014).Genome-wide identification of cytosine-5 DNA methyltransferases and demethylases in Solanum lycopersicum.Gene, 550:230-237. [6]Chan SW, Henderson IR, Jacobsen SE(2005).Gardening the genome: DNA methylation in Arabidopsis thaliana.Nat Rev Genet., 6:351-360. [7]Chan SW, Zilberman D, Xie Z, Johansen LK, Carrington JC, Jacobsen SE(2004).RNA silencing genes control de novo DNA methylation..Science, 303:1336-1336. [8]Di X, Takken FL, Tintor N(2016).Fusarium oxysporum. Front Plant Sci. 7, 170..Front Plant Sci., 16:1-20. [9]Guo X, Xie Q, Li B, Su H(2020).Molecular characterization and transcription analysis of DNA methyltransferase genes in tomato (Solanum lycopersicum). Genet Mol Biol. 43, e20180295..Genet Mol Biol., 43:1-15. [10]Gao Y, Li SJ, Zhang SW, Feng T, Zhang ZY, Luo SJ, Mao HY, Borkovich KA, Ouyang SQ.(2021).SlymiR482e-3p mediates tomato wilt disease by modulating ethylene response pathway.Plant Biotechnol J., 19:17-19. [11]Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM, Schwach F, Doonan JH, Baulcombe DC(2010).The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci.The Plant cell, 22:321-334. [12]Henderson IR, Jacobsen SE(2007).Epigenetic inheritance in plants.Nature, 447:418-424. [13]Huang W, Xian Z, Hu G, Li Z(2016).SlAGO4A, a core factor of RNA-directed DNA methylation (RdDM) pathway, plays an important role under salt and drought stress in tomato.Mol Breed, 36:1-13. [14]Ji HM, Mao HY, Li SJ, Feng T, Zhang ZY, Cheng L, Luo SJ, Borkovich KA, Ouyang SQ(2021).Fol-milR1,a pathogenicity factor of Fusarium oxysporum,confers tomato wilt disease resistance by impairing host immune responses.New Phytol., 232:705-718. [15]Ji HM, Zhao M, Gao Y, Cao XX, Mao HY, Zhou Y, Fan WY, Borkovich KA, Ouyang SQ, Liu P(2018).FRG3, a Target of slmiR482e-3p, Provides Resistance against the Fungal Pathogen Fusarium oxysporum in Tomato.Front Plant Sci., 9:1-11. [16]Jiang G, Liu D, Yin D, Zhou Z, Shi Y, Li C, Zhu L, Zhai W(2020).A rice NBS-arc gene conferring quantitative resistance to bacterial blight is regulated by a pathogen effector-inducible miRNA.Mol Plant, 13:1752-1767. [17]Law JA, Jacobsen SE(2010a).Establishing,maintaining and modifying DNA methylation patterns in plants and animals.Nat Rev Genet., 11:204-220. [18]Law JA, Jacobsen SE(2010b).Establishing,maintaining and modifying DNA methylation patterns in plants and animals.Nat Rev Genet., 11:204-220. [19]Li C, Schilmiller AL, Liu G, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, Howe GA(2005).Role of beta-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato.Plant Cell, 17:971-986. [20]Matzke MA, Mosher RA(2014).RNA-directed DNA methylation: an epigenetic pathway of increasing complexity.Nat Rev Genet., 15:394-408. [21]Ouyang S, Park G, Atamian HS, Han CS, Stajich JE, Kaloshian I, Borkovich KA(2014).MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum..PLoS Pathog., 10:1-15. [22]Pradhan M, Pandey P, Baldwin IT, Pandey SP(2020).Argonaute4 modulates resistance to Fusarium brachygibbosum infection by regulating Jasmonic Acid signaling.Plant Physiol., 184:1128-1152. [23]Srinivas C, Nirmala Devi D, Narasimha Murthy K, Mohan CD, Lakshmeesha TR, Singh B, Kalagatur NK, Niranjana SR, Hashem A, Alqarawi AA, Tabassum B, Abd Allah EF, Chandra Nayaka S(2019).Fusarium oxysporum fsp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity– A review. Saudi J Biol Sci..Saudi J Biol Sci., 26:1315-1324. [24]Wang B, Sun Y, Song N, Zhao M, Liu R, Feng H, Wang X, Kang Z(2017).Puccinia striiformis fsp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene.New Phytol., 215:338-350. [25]Wang J, Liu X, Zhang A, Ren Y, Wu F, Wang G, Xu Y, Lei C, Zhu S, Pan T, Wang Y, Zhang H, Wang F, Tan YQ, Wang Y, Jin X, Luo S, Zhou C, Zhang X, Liu J, Wang S, Meng L, Wang Y, Chen X, Lin Q, Zhang X, Guo X, Cheng Z, Wang J, Tian Y, Liu S, Jiang L, Wu C, Wang E, Zhou JM, Wang YF, Wang H, Wan J(2019).A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice.Cell Res., 29:820-831. [26]Wang M, Weiberg A, Jin H(2015).Pathogen small RNAs: a new class of effectors for pathogen attacks.Mol Plant Pathol., 16:219-223. [27]Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H(2013).Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways.Science, 342:118-123. [28]Yu A, Lepère G, Jay F, Wang J, Bapaume L, Wang Y, Abraham AL, Penterman J, Fischer RL, Voinnet O, Navarro L(2013).Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense.Proc Natl Acad Sci U S A, 110:2389-2394. [29]Zilberman D, Cao X, Jacobsen SE(2003).ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation.Science, 299:716-719. [30]Zilberman D, Cao X, Johansen LK, Xie Z, Carrington JC, Jacobsen SE(2004).Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats.Curr Biol., 14:1214-1220. |
[1] | 罗兰莎, 宋雯佩, 化青珠, 李大卫, 梁红, 张宪智. 植物性别决定基因及其表观遗传调控研究进展[J]. 植物学报, 2024, 59(2): 278-290. |
[2] | 方妍力, 田传玉, 苏如意, 刘亚培, 王春连, 陈析丰, 郭威, 纪志远. 水稻抗细菌性条斑病基因挖掘与初定位[J]. 植物学报, 2024, 59(1): 1-9. |
[3] | 田传玉, 方妍力, 沈晴, 王宏杰, 陈析丰, 郭威, 赵开军, 王春连, 纪志远. 2019-2021年我国南方稻区白叶枯病菌的毒力与遗传多样性调查研究[J]. 植物学报, 2023, 58(5): 743-749. |
[4] | 王田幸子, 朱峥, 陈悦, 刘玉晴, 燕高伟, 徐珊, 张彤, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻OsWRKY42是Xa21介导的抗白叶枯病途径新元件[J]. 植物学报, 2021, 56(6): 687-698. |
[5] | 宋凝曦, 谢寅峰, 李霞. 干旱胁迫下表观遗传机制对转C4型PEPC基因水稻种子萌发的影响[J]. 植物学报, 2020, 55(6): 677-692. |
[6] | 赵华,邵广达,高文鑫,顾彪. 双管基因枪介导的基因瞬时表达技术在拟南芥中的应用[J]. 植物学报, 2020, 55(2): 182-191. |
[7] | 周俭民. 小麦抗赤霉病利器——他山之石[J]. 植物学报, 2020, 55(2): 123-125. |
[8] | 陈威,杨颖增,陈锋,周文冠,舒凯. 表观遗传修饰介导的植物胁迫记忆[J]. 植物学报, 2019, 54(6): 779-785. |
[9] | 王韵茜, 苏延红, 杨睿, 李鑫, 李晶, 曾千春, 罗琼. 云南疣粒野生稻稻瘟病抗性[J]. 植物学报, 2018, 53(4): 477-486. |
[10] | 胡朝芹, 刘剑宇, 王韵茜, 杨睿, 汪秉琨, 何月秋, 曾千春, 罗琼. 粳稻子预44抗LP11稻瘟病菌基因Pizy6(t)的定位[J]. 植物学报, 2017, 52(1): 61-69. |
[11] | 郑小国, 陈亮, 罗利军. 植物中表观遗传修饰研究进展[J]. 植物学报, 2013, 48(5): 561-572. |
[12] | 郭欣欣, 毛雪, 张敏. 锌对不同发育时期子代果蝇基因组DNA甲基化的影响[J]. 生物多样性, 2012, 20(6): 710-715. |
[13] | 颜菱, 刘义飞, 黄宏文. 猕猴桃倍性混合居群基因组遗传和表观遗传变异[J]. 植物学报, 2012, 47(5): 454-461. |
[14] | 张美善, 刘宝. 植物胚乳发育的表观遗传学调控[J]. 植物学报, 2012, 47(2): 101-110. |
[15] | 杜亚琼, 王子成. 甘露醇对拟南芥基因组DNA甲基化的影响[J]. 植物学报, 2011, 46(3): 285-292. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||