陈靖彧1, 王文庆1, 罗诗语2, 杨路祥1, 汪慧骏1, 吴天宇1, 朱乾坤1*
1西南交通大学生命科学与工程学院, 成都 610031; 2四川省成都市石室中学, 成都 610041
收稿日期:
2025-01-16
修回日期:
2025-04-22
出版日期:
2025-05-14
发布日期:
2025-05-14
通讯作者:
朱乾坤
基金资助:
Jingyu Chen1, Wenqing Wang1,
Shiyu Luo2, Luxiang Yang1, Huijun Wang1,
Tianyu Wu1, Qiankun Zhu1*
1College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; 2Chengdu Shishi High School of Sichuan Province, Chengdu 610041, China
Received:
2025-01-16
Revised:
2025-04-22
Online:
2025-05-14
Published:
2025-05-14
Contact:
Zhu Qiankun
摘要: TCP蛋白家族是植物特有的一类转录因子家族, 在植物生长发育及响应胁迫过程中发挥着重要作用。为了解岩白菜(Bergenia purpurascens) BpTCP基因家族的功能, 本研究基于转录组测序数据, 利用生物信息学方法对岩白菜BpTCP基因家族进行了系统鉴定与分析。研究共鉴定出16个BpTCP基因, 可分为2大类, 所有BpTCP基因均含有保守的TCP结构域, 相同进化枝的BpTCP蛋白所含基序类型相似。表达模式分析表明, 不同BpTCP基因在不同组织中的表达水平存在差异。在低温胁迫条件下, BpTCP10、BpTCP1和BpTCP12的表达出现显著变化。BpTCP基因家族表达水平与次级代谢物含量的相关性分析显示, 部分BpTCP基因的表达与黄酮类、酚类等多种代谢物的含量之间存在显著相关性。本研究为进一步探究BpTCP基因在岩白菜生长发育、低温胁迫响应及次生代谢合成途径中的生物学功能奠定了基础。
陈靖彧, 王文庆, 罗诗语, 杨路祥, 汪慧骏, 吴天宇, 朱乾坤. 岩白菜TCP基因家族的表达模式及代谢关联分析. 植物学报, DOI: 10.11983/CBB25008.
Jingyu Chen, Wenqing Wang, Shiyu Luo, Luxiang Yang, Huijun Wang, Tianyu Wu, Qiankun Zhu. Expression Pattern and Metabolic Correlation Analysis of TCP Gene Family in Bergenia purpurascens. Chinese Bulletin of Botany, DOI: 10.11983/CBB25008.
Agnihotri V, Sati P, Jantwal A, Pandey A (2015). Antimicrobial and antioxidant phytochemicals in leaf extracts of Bergenia ligulata: a Himalayan herb of medicinal value. Nat Prod Res 29, 1074-1077.Aguilar-Martinez J A, Sinha N (2013). Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front Plant Sci 4, 406.Braun N, de Saint Germain A, Pillot J P, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau C (2012). The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching. Plant Physiol 158, 225-238.Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R (2020). TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular Plant 13, 1194-1202.Cubas P, Lauter N, Doebley J, Coen E (1999). The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18, 215-222.Herve C, Dabos P, Bardet C, Jauneau A, Auriac M C, Ramboer A, Lacout F, Tremousaygue D (2009). In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development. Plant Physiol 149, 1462-1477.Kosugi S, Ohashi Y (1997). PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. The Plant Cell 9, 1607-1619.Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2010). TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22, 3574-3588.Liu Y J, An J P, Gao N, Wang X, Chen X X, Wang X F, Zhang S, You C X (2022). MdTCP46 interacts with MdABI5 to negatively regulate ABA signalling and drought response in apple. Plant Cell Environ 45, 3233-3248.Manassero N G U, Viola I L, Welchen E, Gonzalez D H (2013). TCP transcription factors: architectures of plant form. 4, 111-127.Martin-Trillo M, Cubas P (2010). TCP genes: a family snapshot ten years later. Trends Plant Sci 15, 31-39.Nag A, King S, Jack T (2009). miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA 106, 22534-22539.Panche A N, Diwan A D, Chandra S R (2016). Flavonoids: an overview. Journal of Nutritional Science 5, e47.Perez M, Guerringue Y, Ranty B, Pouzet C, Jauneau A, Robe E, Mazars C, Galaud J P, Aldon D (2019). Specific TCP transcription factors interact with and stabilize PRR2 within different nuclear sub-domains. Plant Science 287, 110197.Takeda T, Amano K, Ohto M A, Nakamura K, Sato S, Kato T, Tabata S, Ueguchi C (2006). RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development. Plant Mol Biol 61, 165-177.Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E (2008). Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. Plant J 53, 42-52.Uberti-Manassero N G, Lucero L E, Viola I L, Vegetti A C, Gonzalez D H (2011). The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. Journal of Experimental Botany 63, 809-823.Viola I L, Gonzalez D H (2023). TCP Transcription Factors in Plant Reproductive Development: Juggling Multiple Roles. Biomolecules 13, 750.Wang M Y, Zhao P M, Cheng H Q, Han L B, Wu X M, Gao P, Wang H Y, Yang C L, Zhong N Q, Zuo J R, Xia G X (2013). The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation. Plant Physiol 162, 1669-1680.Wu J F, Tsai H L, Joanito I, Wu Y C, Chang C W, Li Y H, Wang Y, Hong J C, Chu J W, Hsu C P, Wu S H (2016). LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat Commun 7, 13181.Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H (2023). Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res 51, W587-W592.Yan R, Xie B, Xie K, Liu Q, Sui S, Wang S, Chen D, Liu J, Chen R, Dai J, Yang L (2024). Unravelling and reconstructing the biosynthetic pathway of bergenin. Nat Commun 15, 3539.Yongsi Z, Changmin L, Xiaohong L J L, Shoumin F, Yunxiang L, Daowen H (2011). Biological advances in Bergenia genus plant. African Journal of Biotechnology 10, 8166-8169.Zhang G, Zhao H, Zhang C, Li X, Lyu Y, Qi D, Cui Y, Hu L, Wang Z, Liang Z, Cui S (2019). TCP7 functions redundantly with several Class I TCPs and regulates endoreplication in Arabidopsis. Journal of Integrative Plant Biology 61, 1151-1170.Zhang S, Gai Z, Gui T, Chen J, Chen Q, Li Y (2021). Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. Evidence-Based Complementary and Alternative Medicine 2021, 6139308.Zhang S S, Liao Z X, Huang R Z, Gong C C, Ji L J, Sun H F (2018). A new aromatic glycoside and its anti-proliferative activities from the leaves of Bergenia purpurascens. Nat Prod Res 32, 668-675.Zhang X, Yu F, Lyu X, Chen J, Zeng H, Xu N, Wu Y, Zhu Q (2023). Transcriptome profiling of Bergenia purpurascens under cold stress. BMC Genomics 24, 754.Zhu Q, Wu Y, Zhang X, Xu N, Chen J, Lyu X, Zeng H, Yu F (2024). Metabolomic and transcriptomic analyses reveals candidate genes and pathways involved in secondary metabolism in Bergenia purpurascens. BMC Genomics 25, 1083. |
[1] | 杨莉, 曲茜彤, 陈子航, 邹婷婷, 王全华, 王小丽. 菠菜AT-hook基因家族鉴定与水杨酸响应表达谱分析[J]. 植物学报, 2025, 60(3): 377-392. |
[2] | 徐聪, 张飞宇, 俞道远, 孙新, 张峰. 土壤动物的分子分类预测策略评估[J]. 生物多样性, 2022, 30(12): 22252-. |
[3] | 赵宇慧, 李秀秀, 陈倬, 鲁宏伟, 刘羽诚, 张志方, 梁承志. 生物信息学分析方法I: 全基因组关联分析概述[J]. 植物学报, 2020, 55(6): 715-732. |
[4] | 李格,孟小庆,李宗芸,朱明库. 甘薯盐胁迫响应基因IbMYB3的表达特征及生物信息学分析[J]. 植物学报, 2020, 55(1): 38-48. |
[5] | 程广前,贾克利,李娜,邓传良,李书粉,高武军. 石刁柏核质体DNA的生物信息学分析及染色体定位[J]. 植物学报, 2019, 54(3): 328-334. |
[6] | 吕秀立, 张群, 陈香波, 李圃锦, 吴伟, 关媛. 岩白菜属植物规模化繁殖及遗传稳定性[J]. 植物学报, 2018, 53(5): 643-652. |
[7] | 刘魏, 童永鳌, 白洁. 水稻雄配子体发育过程中tRNA片段的生物信息学分析[J]. 植物学报, 2018, 53(5): 625-633. |
[8] | 贾乐东, 李施蒙, 许代香, 曲存民, 李加纳, 王瑞. 甘蓝型油菜BnMYB80基因的生物信息学分析[J]. 植物学报, 2016, 51(5): 620-630. |
[9] | 程甜, 魏强, 李广林. 中粒咖啡萜类合成酶基因家族的生物信息学分析[J]. 植物学报, 2016, 51(2): 235-250. |
[10] | 徐晓婷, 王志恒, DimitarDimitrov. 批量下载GenBank基因序列数据的新工具——NCBIminer[J]. 生物多样性, 2015, 23(4): 550-555. |
[11] | 黄儒, 苍晶, 于晶, 卢宝伟, 刘丽杰, 王健飞, 郭人铭, 徐琛. 冬小麦小RNA高通量测序及生物信息学分析[J]. 植物学报, 2014, 49(1): 8-18. |
[12] | 张贵慰, 曾珏, 郭维, 罗琼. 水稻AT-hook基因家族生物信息学分析[J]. 植物学报, 2014, 49(1): 49-62. |
[13] | 孙欣, 高莹, 杨云锋. 环境微生物的宏基因组学研究新进展[J]. 生物多样性, 2013, 21(4): 393-400. |
[14] | 程鹏;黄志刚;洪亚辉;刘霞;萧浪涛;王若仲*. 植物激素相关核酸和蛋白质二级数据库的构建与应用[J]. 植物学报, 2010, 45(02): 258-264. |
[15] | 耿立英, 张传生, 杜立新. 鸡基因组pre-microRNA SNP多态性[J]. 生物多样性, 2009, 17(3): 248-256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||