Chin Bull Bot ›› 2018, Vol. 53 ›› Issue (5): 578-580.doi: 10.11983/CBB18052

• COMMENTARY • Previous Articles     Next Articles

The Mechanism of Metabolite Changes in Tomato Breeding by a Multi-Omics Approach

Ma Aimin1,2, Qi Xiaoquan1,*()   

  1. 1Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-03-02 Accepted:2018-05-01 Online:2018-11-29 Published:2018-09-01
  • Contact: Qi Xiaoquan
  • About author:

    † These authors contributed equally to this paper


Domestication, improvement, divergence and introgression are the major stages in the history of tomato breeding. During this period, both fruit weight and quality of tomato were significantly changed; however, the variation in metabolites and the genetic basis remain unknown. Recently, researchers revealed the metabolome changes in tomato breeding by using a multi-omics dataset. The content of 46 steroidal glycoalkaloids (SGAs) declined during tomato domestication, and 7 major loci were identified for 44 of 46 compounds. Pyramiding of these high-value loci significantly reduced the SGAs content. The linkage drag of fruit weight genes and nearby genes might result from altered metabolite profiles during the selection for larger fruits, and the selection for one trait might affect other traits. This work systematically analyzed the effects of selection on crop metabolites by a multi-omics approach, which lays the foundation for tomato quality improvement.

Key words: metabolites, multi-omics, tomato

1 漆小泉, 王玉兰, 陈晓亚 (2011). 植物代谢组学: 方法与应用. 北京: 化学工业出版社. pp. 13-18.
2 Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004). Metabolite profiling: from diagnostics to systems biology.Nat Rev Mol Cell Biol 5, 763-769.
3 Fiehn O (2002). Metabolomics—the link between genotypes and phenotypes.Plant Mol Biol 48, 155-171.
4 Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000). Metabolite profiling for plant functional genomics.Nat Biotechnol 18, 1157-1161.
5 Keurentjes JJB, Fu JY, De Vos CHR, Lommen A, Hall RD, Bino RJ, Van Der Plas LHW, Jansen RC, Vreugdenhil D, Koornneef M (2006). The genetics of plant metabolism.Nat Genet 38, 842-849.
6 Lin T, Zhu GT, Zhang JH, Xu XY, Yu QH, Zheng Z, Zhang ZH, Lun YY, Li S, Wang XX, Huang ZJ, Li JM, Zhang CZ, Wang TT, Zhang YY, Wang AX, Zhang YC, Lin K, Li CY, Xiong GS, Xue YB, Mazzucato A, Causse M, Fei ZJ, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li JF, Ye ZB, Du YC, Huang SW (2014). Genomic analyses provide insights into the history of tomato breeding.Nat Genet 46, 1220-1226.
7 Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D, Selbig J, Pleban T, Zamir D, Fernie AR (2008). Mode of inheritance of primary metabolic traits in tomato.Plant Cell 20, 509-523.
8 Tarpley L, Duran AL, Kebrom TH, Sumner LW (2005). Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period.BMC Plant Biol 5, 8.
9 Vincent H, Wiersema J, Kell S, Fielder H, Dobbie S, Castañeda-Álvarez NP, Guarino L, Eastwood R, Leόn B, Maxted N (2013). A prioritized crop wild relative inventory to help underpin global food security.Biol Conserv 167, 265-275.
10 Zhu GT, Wang SC, Huang ZJ, Zhang SB, Liao QG, Zhang CZ, Lin T, Qin M, Peng M, Yang CK, Cao X, Han X, Wang XX, van Der Knaap E, Zhang ZH, Cui X, Klee H, Fernie AR, Luo J, Huang SW (2018). Rewiring of the fruit metabolome in tomato breeding.Cell 172, 249-261.
[1] Zhang Tianpeng, Yang Xinghong. Advances in the Molecular and Physiological Mechanisms of Early Development of Tomato Fruit [J]. Chin Bull Bot, 2018, 53(6): 856-866.
[2] Yu-Peng LU, Ji-Yuan XU, Xiao-Xi ZHANG, Bo-Ya WANG, Bo XIE, Zeng-Wen LIU. Effects of leachate from understory medicinal plants on litter decomposition and soil enzyme activities of Betula albo-sinensis and Eucommia ulmoides [J]. Chin J Plan Ecolo, 2017, 41(6): 639-649.
[3] Rui GUO, Ji ZHOU, Fan YANG, Feng LI, Hao-Ru LI, Xu XIA, Qi LIU. Growth metabolism of wheat under drought stress at the jointing-booting stage [J]. Chin J Plan Ecolo, 2016, 40(12): 1319-1327.
[4] Lei Deng, Minmin Du, Chuanyou Li. Chinese Scientists Made Breakthrough Progresses in Studies on Domestication and Fruit Quality in Tomato and Cucumber [J]. Chin Bull Bot, 2015, 50(3): 275-278.
[5] Qi Fang, Jiahong Dong, Kuanyu Zheng, Zhongkai Zhang. Cytopathological Characterization of Tobacco on Co-infection with Tomato zonate spot virus and Potato virus Y [J]. Chin Bull Bot, 2014, 49(6): 704-709.
[6] Rongjun Fang, Hua Zhao, Yonghui Liao, Chengyi Tang, Fengyao Wu, Yu Zhu, Yanjun Pang, Guihua Lu, Xiaoming Wang, Rongwu Yang, Jinliang Qi, Yonghua Yang. Dual Regulating Effects of Ethylene on the Formation of Plant Secondary Metabolites [J]. Chin Bull Bot, 2014, 49(5): 626-639.
[7] Guangjun Guo, Jianchang Gao, Xiaoxuan Wang, Yanmei Guo, John C. Snyder, Yongchen Du. Secondary Metabolites on Leaf Surface of Different Tomato Species [J]. Chin Bull Bot, 2014, 49(1): 19-29.
[8] Aiqing Sun, Shujuan Ge, Jiedao Zhang. Use of Matrix Attachment Region in Regulating Transgene Expression of Tomato [J]. Chin Bull Bot, 2011, 46(6): 688-693.
[9] TENG Zhong-Qiu, FU Hui-Qing, JIA Shao-Hua, MENG Wei-Wei, DAI Rong-Ji, DENG Yu-Lin. Review of current progress in the metabolomics for plant response to abiotic stress [J]. Chin J Plan Ecolo, 2011, 35(1): 110-118.
[10] Ning Li;Xiangyang Xu;Jingbin Jiang;Jingfu Li*. Bioinformatics Resources for Tomato Research [J]. Chin Bull Bot, 2010, 45(01): 95-101.
[12] Hui Yang;Lizhe An;Zhiye Wang;Jianping Zhou;Xunling Wang. Effects of Enhanced UV-B Radiation on Pollen Activities of 2 Tomato Cultivars in Terms of Endogenous Hormone,Polyamine and Proline Levels in Stamens [J]. Chin Bull Bot, 2007, 24(02): 161-167.
[13] . Interaction Between the Inherent Resistant Secondary Metabolites and the Exogenous Insect-ResistaProtein of Transgenic Plantsnce [J]. Chin Bull Bot, 2004, 21(06): 733-742.
[14] WU Guang-Xu HE Ting-Yu LIU Ai-Yuan CHEN Wei-Xin. Active Metabolites Against Phytopathogenic Fungi in Higher Plants [J]. Chin Bull Bot, 2004, 21(03): 367-375.
[15] LI Yao-Dong;WEI Yu-Ning;GU Shu-Rong. The Relation between PG and Ripening of Tomato Fruit [J]. Chin Bull Bot, 2004, 21(01): 79-83.
Full text



[1] Cui Gao;Yuxia Chen;Ying Bao;Min Feng;Anming Lu. Studies on Sexual Organs and Embryological Development Morphology of Speirantha gardenii (Convallariaceae)[J]. Chin Bull Bot, 2010, 45(06): 705 -712 .
[2] Jiang Gao-ming. The Impact of Globae Increasing of CO2 on Plants[J]. Chin Bull Bot, 1995, 12(04): 1 -7 .
[3] Zhang Jun Han Bi-wen. Advance in the Study of Histochemical Localization for[J]. Chin Bull Bot, 1995, 12(专辑3): 131 -142 .
[4] Tang Yan-cheng. A Short Guide to the International Code of Botanical Nomenclature V.[J]. Chin Bull Bot, 1984, 2(04): 51 -57 .
[5] Xu Ji. The Protective Protein of Nitrogenase Against Oxygen Damage-Fe-S Protein[J]. Chin Bull Bot, 1986, 4(12): 1 -4 .
[6] . [J]. Chin Bull Bot, 2001, 18(05): 633 .
[7] Huang Zhao-xiang;Zheng Zhen-gui and Zhu Du. Ecological Effect of Taxodium ascendens-Oryza sativa Ecosystem(I) The Growing Characteristic of Taxodium Ascendens in the Ecosystem[J]. Chin Bull Bot, 1996, 13(02): 48 -51 .
[8] GU Rui-Sheng;LIU Qun-Lu;CHEN Xue-Mei and JIANG Xiang-Ning. Comparison and Optimization of the Methods on Protein Extraction and SDS-PAGE in Woody Plants[J]. Chin Bull Bot, 1999, 16(02): 171 -177 .
[9] Jiang Gao-ming. LI-6400 Portable Photosynthesis System: Principle, Function, Basic Operation and Main Problems and Solutions During Measurement[J]. Chin Bull Bot, 1996, 13(增刊): 72 -76 .
[10] Li Ling;Luo Yun-xiu;He Jian-hui and Pan Rui-chi. Promoting the Formation of Adventitious Roots in Cutting of Some Woody Plants by GL Reagent[J]. Chin Bull Bot, 1996, 13(增刊): 63 -65 .