植物学报 ›› 2018, Vol. 53 ›› Issue (1): 94-103.doi: 10.11983/CBB16247

• 研究报告 • 上一篇    下一篇

鲁桑叶绿体基因组序列及特征分析

李巧丽, 延娜, 宋琼, 郭军战*()   

  1. 西北农林科技大学林学院, 杨凌 712100
  • 收稿日期:2016-12-13 接受日期:2017-03-29 出版日期:2018-01-01 发布日期:2018-08-10
  • 通讯作者: 郭军战 E-mail:guojunzhan@163.com
  • 基金资助:
    西北农林科技大学唐仲英育种基金(No.2013-14)

Complete Chloroplast Genome Sequence and Characteristics Analysis of Morus multicaulis

Qiaoli Li, Na Yan, Qiong Song, Junzhan Guo*()   

  1. College of Forestry, Northwest A & F University, Yangling 712100, China
  • Received:2016-12-13 Accepted:2017-03-29 Online:2018-01-01 Published:2018-08-10
  • Contact: Junzhan Guo E-mail:guojunzhan@163.com

摘要:

鲁桑(Morus multicaulis)是亚洲地区栽培的重要经济作物。以鲁桑品种日本胡橙为实验材料, 利用高通量测序技术对鲁桑叶绿体基因组进行测序, 获得NCBI登录号(KU355297), 并研究鲁桑的叶绿体基因组结构。结合前人对蒙桑(M. mongolica)、印度桑(M. indica)和川桑(M. notabilis)的研究结果, 对鲁桑的系统进化关系进行了探讨。研究结果表明: 鲁桑叶绿体基因组是一个典型的四部分结构, 全长159 154 bp, 共注释130个基因, 包含85个蛋白质编码基因(18个基因在反向重复区重复)、37个转运RNA (tRNA)基因和8个核糖体RNA (rRNA)基因。生物信息学分析表明, 在鲁桑中共搜索到82个SSR位点, 单核苷酸、二核苷酸、三核苷酸、四核苷酸和五核苷酸重复基序个数分别为63、7、2、9和1个, 并没有发现六核苷酸; 其中单核苷酸重复在鲁桑的叶绿体基因组SSR中占76.8%。采用MEGA 6.0软件, 通过最大似然法和近邻结合法对包括4个桑属物种在内的15个物种的叶绿体基因组序列进行聚类分析, 2种方法得到的聚类结果均为鲁桑和蒙桑聚在一起。研究结果对叶绿体基因组工程研究及桑属种间的分子标记开发和优良品种培育具有一定的参考价值。

关键词: 鲁桑, 叶绿体基因组, 高通量测序, 聚类分析

Abstract:

Mulberry is an economically important crop in Asia. We determined the complete chloroplast sequence of cultivated species of Morus multicaulis. Ribenhuchen was used as experimental material. High-throughput sequencing was used to sequence the chloroplast genome and the genome structure (NCBI No.: KU355297), and we compared the chloroplast genome with those of reported sibling species (Morus mongolica, M. indica, M. notabilis). The chloroplast genome (cpDNA) of M. multicaulis with a typical quadripartite structure is 159 154 bp long. The cpDNA of M. multicaulis contains 130 genes, including 85 protein coding genes (18 genes duplicated in the inverted repeat regions), 37 transfer RNA genes and 8 ribosomal RNA genes. There are 82 simple sequence repeats, and the number of mono-, di-, tri-, tetra-, pentanucleotide repeat motifs is 63, 7, 2, 9, and 1, with no hexanucleotide repeat sequences. Mono-nucleotide repeat sequences accounted for 76.8% of the cpDNA of simple sequence repeats. MEGA 6.0 was used to construct the phylogenetic tree of 15 species and for cluster analysis of Morus plants. M. multicaulis and M. mongolica were clustered into one group. The research results have reference value for chloroplast genome research, molecular marker development and breeding of mulberry.

Key words: Morus multicaulis, chloroplast genome, high-throughput sequencing, cluster analysis

图1

鲁桑叶绿体基因组物理图谱"

表1

4种桑属植物叶绿体基因组基本特征比较"

Genome feature Morus indica M. mongolica M. notabilis M. multicaulis
Genome size (bp) 158484 158459 158680 159154
LSC length (bp)/percent (%)/GC content (%) 87386/55.14/34.1 87367/55.14/34.0 87470/55.12/34.1 87763/55.15/33.9
SSC length (bp)/percent (%)/GC content (%) 19742/12.46/29.4 19736/12.45/29.3 19776/12.46/29.3 20035/12.59/29.3
IR length (bp)/percent (%)/GC content (%) 25678/16.20/42.9 25678/16.20/42.9 25717/16.21/42.9 25678/16.13/42.9
GC content (%) 36.4 36.3 36.4 36.2
Number of genes 133 133 129 130
Number of protein-coding genes 88 88 84 85

表2

鲁桑叶绿体基因组注释基因信息"

Function Gene group Gene name
Self-replication Ribosomal RNA genes rrn4 rrn5 rrn16 rrn23

Transfer RNA genes trnA-UGC
trnF-GAA
trnH-GUG
trnL-CAA
trnN-GUU
trnR-UCU
trnT-GGU
trnW-CCA
trnC-GCA
trnfM-CAU
trnI-CAU
trnL-UAA
trnP-UGG
trnS-GCU
trnT-UGU
trnY-GUA
trnD-GUC
trnG-GCC
trnI-GAU
trnL-UAG
trnQ-UUG
trnS-GGA
trnV-GAC
trnE-UUC
trnG-UCC
trnK-UUU
trnM-CAU
trnR-ACG
trnS-UGA
trnV-UAC
Small subunit of ribosome rps2
rps8
rps15
rps3
rps11
rps16*
rps4
rps12
rps18
rps7
rps14
rps19
Lange subunit of ribosome rpl2*
rpl22
rpl36
rpl14
rpl23
rpl16*
rpl32
rpl20
rpl33
RNA polymerase subunits rpoA rpoB rpoC1* rpoC2
NADH dehydrogenase ndhA*
ndhE
ndhI
ndhB*
ndhF
ndhJ
ndhC
ndhG
ndhK
ndhD
ndhH
Photosynthesis Photosystem I psaA
psaJ
psaB psaC psaI
Photosystem II psbA
psbE
psbJ
psbN
psbB
psbF
psbK
psbT
psbC
psbH
psbL
psbZ
psbD
psbI
psbM
Cytochrome b/f complex petA
petL
petB*
petN
petD* petG
ATP synthase atpA
atpH
atpB
atpI
atpE atpF*
ATP Protease rbcl
Large subunit of rubisco matK
Maturase clpP*
Envelope membrane protein cemA
Other genes Subunit of acetyl-CoA-carboxylase accD
C-type cytochrome synthesis ccsA
Unknown function Hypothetical chloroplast reading frames yf1 ycf3* ycf4 ycf15
ORFs ycf2
ycf68*

表3

鲁桑密码子信息"

Codon Amino acid Number Codon Amino acid Number
GGG Gly(G) 494 TGG Trp(W) 684
GGA Gly(G) 759 TGA Stop 1032
GGT Gly(G) 599 TGT Cys(C) 725
GGC Gly(G) 350 TGC Cys(C) 435
GAG Glu(E) 550 TAG Stop 786
GAA Glu(E) 1368 TAA Stop 1306
GAT Asp(D) 1064 TAT Try(Y) 1624
GAC Asp(D) 425 TAC Try(Y) 690
GTG Val(V) 418 TTG Leu(L) 1073
GTA Val(V) 728 TTA Leu(L) 1250
GTT Val(V) 792 TTT Phe(F) 2343
GTC Val(V) 430 TTC Phe(F) 1471
GCG Ala(A) 249 TCG Ser(S) 578
GCA Ala(A) 430 TCA Ser(S) 979
GCT Ala(A) 511 TCT Ser(S) 1273
GCC Ala(A) 321 TCC Ser(S) 864
AGG Arg(R) 596 CGG Arg(R) 350
AGA Arg(R) 1044 CGA Arg(R) 596
AGT Ser(S) 718 CGT Arg(R) 363
AGC Ser(S) 478 CGC Arg(R) 236
AAG Lys(K) 1039 CAG Gln(Q) 440
AAA Lys(K) 2280 CAA Gln(Q) 1013
AAT Asn(N) 1883 CAT His(H) 945
AAC Asn(N) 728 CAC His(H) 362
ATG Met(M) 855 CTG Leu(L) 489
ATA Ile(I) 1729 CTA Leu(L) 799
ATT Ile(I) 1965 CTT Leu(L) 1065
ATC Ile(I) 1083 CTC Leu(L) 581
ACG Thr(T) 399 CCG Pro(P) 400
ACA Thr(T) 689 CCA Pro(P) 738
ACT Thr(T) 690 CCT Pro(P) 730
ACC Thr(T) 587 CCC Pro(P) 580

表4

鲁桑和蒙桑中简单重复序列(SSR)位点对比"

Length (bp) Number Morus multicaulis M. mongolica
A10 10 2142, 3980, 5079, 5977, 29067, 49740, 68616, 68631, 114154 (ndhF), 116262 3760, 4859, 28847, 38118, 113758 (ndhF), 115866
A11 3 9589, 62837, 87467 1921, 5757, 9371, 62504, 81011
A12 3 4830, 53982, 85376 13368, 38142, 53676, 84178, 87070
A13 1 13596 4609, 73766
A14 1 128163 127468
A15 1 74160
A16 1 8990
A17 8772
T10 20 66, 5258, 8582, 9802, 14098, 14919, 24357, 30672, 30938, 54024, 57098 (atpB), 62610, 66927, 68743, 70892, 73958, 83130, 116784, 130487 (ycf1), 132244 (ycf1) 5038, 7036, 9584, 24137, 30452, 30718, 53718, 56773 (atpB), 62277, 70506, 73564, 82753, 116369, 121665, 129792 (ycf1), 131549 (ycf1)
T11 6 513, 34264, 69552, 78684, 122351, 131346 (ycf1) 293, 8363, 57218, 59233, 66594, 68126, 69166, 74280, 78285, 130651 (ycf1)
T12 5 27617 (rpoB), 57549, 59565, 72471, 85809 12476, 13966, 27397 (rpoB), 34035, 85411
T13 5 12703, 13286, 68491, 81352, 128585 8996, 13058, 51524, 72085, 127890
T14 5 9213, 51829, 63865, 74676, 86927 63532, 80953
T16 49162, 86528
T17 1 49475
T19 1 116631 116235
AT5 1 11566 (ndhF) 115270 (ndhF)
AT6 2 118643, 118871 10589, 49643
TA6 2 5522, 21234 (rpoC2) 5302, 21009 (rpoC2), 118243
TC5 1 645927 (cemA) 64259 (cemA)
TTC4 1 70909 70523
AAT4 1 128565 127870
ATTT3 1 62140
ATTT4 1 14187 13957, 61807
AAAT3 2 24056 (rpoC1), 46731 (ycf3) 23831(rpoC1), 46414 (ycf3)
TATT3 1 24388 (rpoC1) 24168 (rpoC1)
ATTA3 2 33980, 116443 33751, 116047
TCTT3 1 111575 111179
AAAG3 1 135331 134636
AAGGA3 1 14021 (atpF) 13792 (atpF)
ATTTC3 24071

图2

4个桑属物种叶绿体基因组反向重复区(IR)、大单拷贝区(LSC)和小单拷贝区(SSC)边界比对MT: 鲁桑, MI: 印度桑; MM: 蒙桑; MN: 川桑"

图3

基于叶绿体全基因组的桑属4个物种及其近缘种的最大似然法(ML) (A)和近邻结合法(NJ) (B)聚类结果"

[1] 冯丽春, 杨光伟, 余茂德, 张孝勇, 向怀祥 (1997). 利用RAPD对桑属植物种间亲缘关系的研究. 中国农业科学 30, 52-56.
[2] 黄瑶, 李朝銮, 马诚, 吴乃虎 (1994). 叶绿体DNA及其在植物系统学研究中的应用. 植物学通报 11(2), 11-25.
[3] 徐军望, 冯德江, 宋贵生, 魏晓丽, 陈蕾, 伍晓丽, 李旭刚, 朱桢 (2003). 水稻EPSP合酶第一内含子增强外源基因的表达. 中国科学(C辑) 33, 224-230.
[4] 闫化学, 于杰 (2010). DNA条形码技术在植物中的研究现状. 植物学报 45, 102-108.
[5] 周德贵, 赵琼一, 付崇允, 李宏, 蔡学飞, 罗达, 周少川 (2008). 新一代测序技术及其对水稻分子设计育种的影响. 分子植物育种 6, 619-630.
[6] Allender CJ, Allainguillaume J, Lynn J, King GJ (2007). Simple sequence repeats reveal uneven distribution of genetic diversity in chloroplast genomes of Brassica ole- racea L. and(n=9) wild relatives. Theor Appl Genet 114, 609-618.
[7] Chen C, Zhou W, Huang Y, Wang ZZ (2015). The complete chloroplast genome sequence of the mulberry Morus notabilis(Moreae). Mitochondrial DNA Part A 27, 2856-2857.
[8] Flannery ML, Mitchell FJG, Coyne S, Kavanagh TA, Burke JI, Salamin N, Dowding P, Hodkinson TR (2006). Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs. Theor Appl Genet 113, 1221-1231.
[9] George B, Bhatt BS, Awasthi M, George B, Singh AK (2015). Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants.Curr Genet 61, 665-677.
[10] Hebert PD, Ratnasingham S, de Waard JR (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B 270, S96-S99.
[11] Huang YY, Matzke AJM, Matzke M (2013). Complete sequence and comparative analysis of the chloroplast genome of coconut palm ( Cocos nucifera). PLoS One 8, e74736.
[12] Jansen RK, Raubeson LA, Boore JL, dePamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Herman SJ, Fourcade HM, Kuehl JV, McNeal JR, Leebens-Mack J, Cui LY (2005). Methods for obtaining and analyzing whole chloroplast genome sequen- ces.Methods Enzymol 395, 348-384.
[13] Jiao Y, Jia HM, Li XW, Jia HJ, Chen Z, Wang GY, Chai CY, van de Weg E, Gao ZS (2012). Development of simple sequence repeat (SSR) markers from a genome survey of Chinese Bayberry ( Myrica rubra). BMC Genomics 13, 201.
[14] Katti MV, Ranjekar PK, Gupta VS (2001). Differential distribution of simple sequence repeats in eukaryotic genome sequences.Mol Biol Evol 18, 1161-1167.
[15] Kaundun SS, Matsumoto S (2002). Heterologous nuclear and chloroplast microsatellite amplification and variation in tea, Camellia sinensis. Genome 45, 1041-1048.
[16] Kong WQ, Yang JH (2015). The complete chloroplast genome sequence of Morus mongolica and a comparative analysis within the Fabidae clade. Curr Genet 62, 165-172.
[17] Leigh FJ, Mackay I, Oliveira HR, Gosman NE, Horsnell RA, Jones H, White J, Powell W, Brown TA (2013). Using diversity of the chloroplast genome to examine evolutionary history of wheat species.Genet Resour Crop Evol 60, 1831-1842.
[18] Leseberg CH, Duvall MR (2009). The complete chloroplast genome of Coix lacryma-jobi and a comparative molecular evolutionary analysis of plastomes in cereals. J Mol Evol 69, 311-318.
[19] Nazareno AG, Carlsen M, Lohmann LG (2015). Complete chloroplast genome of Tanaecium tetragonolobum: the first Bignoniaceae plastome. PLoS One 10, e0129930.
[20] Plunkett GM, Downie SR (2000). Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae.Syst Bot 25, 648-667.
[21] Rajendrakumar P, Biswal AK, Balachandran SM, Srinivasarao K, Sundaram RM (2007). Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions.Bioinformatics 23, 1-4.
[22] Ravi V, Khurana JP, Tyagi AK, Khurana P (2006). The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis.Tree Genet Genomes 3, 49-59.
[23] Ruhlman TA, Jansen RK (2014). The plastid genomes of flowering plants.Methods Mol Biol 1132, 3-38.
[24] Shaw J, Lickey EB, Schilling EE, Small RL (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare lll.Am J Bot 94, 275-288.
[25] Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001). Computational and experimental analysis of microsatellites in rice ( Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11, 1441-1452.
[26] Zhang HY, Li C, Miao HM, Xiong SJ (2013). Insights from the complete chloroplast genome into the evolution of Se- samum indicum L. PLoS One 8, e80508.
[1] 高贵锋 褚海燕. 微生物组学的技术和方法及其应用[J]. 植物生态学报, 2020, 44(生态技术与方法专辑): 0-0.
[2] 肖文宏 周青松 朱朝东 吴东辉 肖治术. 野生动物监测技术和方法应用进展与展望[J]. 植物生态学报, 2020, 44(生态技术与方法专辑): 0-0.
[3] 韩本凤 周欣 张雪. 基因组学技术在病毒鉴定与宿主溯源中的应用[J]. 生物多样性, 2020, 28(5): 0-0.
[4] 刘丹,郭忠玲,崔晓阳,范春楠. 5种东北红豆杉植物群丛及其物种多样性的比较[J]. 生物多样性, 2020, 28(3): 340-349.
[5] 陆琪,胡强,施小刚,金森龙,李晟,姚蒙. 基于分子宏条形码分析四川卧龙国家级自然保护区雪豹的食性[J]. 生物多样性, 2019, 27(9): 960-969.
[6] 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. 小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构[J]. 生物多样性, 2019, 27(8): 911-918.
[7] 刘山林. DNA条形码参考数据集构建和序列分析相关的新兴技术[J]. 生物多样性, 2019, 27(5): 526-533.
[8] 张雪, 李兴安, 苏秦之, 曹棋钠, 李晨伊, 牛庆生, 郑浩. 用于蜜蜂和熊蜂肠道微生物分类的细菌16S rRNA数据库优化[J]. 生物多样性, 2019, 27(5): 557-566.
[9] 赵月梅, 杨振艳, 赵永平, 李筱玲, 赵志新, 赵桂仿. 木犀科植物叶绿体基因组结构特征和系统发育关系[J]. 植物学报, 2019, 54(4): 441-454.
[10] 陈志祥, 姚雪莹, Stephen R.Downie, 王奇志. 直刺变豆菜叶绿体全基因组及其特征[J]. 生物多样性, 2019, 27(4): 366-372.
[11] 蒋玉玲, 陈旭辉, 苗青, 曲波. 辽宁省9种兰科植物根内与根际土壤中真菌群落结构的差异[J]. 植物生态学报, 2019, 43(12): 1079-1090.
[12] 梁思琪, 张宪春, 卫然. 利用整合分类学方法进行蕨类植物复合体的物种划分: 以线裂铁角蕨复合体为例[J]. 生物多样性, 2019, 27(11): 1205-1220.
[13] 王凤珍, 唐毅. 食物网关键种的判定及其对稳健性的影响[J]. 生物多样性, 2019, 27(10): 1132-1137.
[14] 邓晓娟, 刘建利, 闫兴富, 刘培贵. 用传统分离培养法和高通量测序技术分析印度块菌子囊果内细菌的群落结构[J]. 生物多样性, 2018, 26(12): 1318-1324.
[15] 周亚峰, 许彦宾, 王艳玲, 李琼, 胡建斌. 基于主成分-聚类分析构建甜瓜幼苗耐冷性综合评价体系[J]. 植物学报, 2017, 52(4): 520-529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 关萍 石建明 李淑久. 绞股兰下胚轴愈伤组织发生与器官再生的组织学观察[J]. 植物学报, 1994, 11(专辑): 19 .
[2] 肖啸 程振起. 叶绿体4.5 SrRNA II. 基因与起源[J]. 植物学报, 1985, 3(06): 7 -9 .
[3] 曹翠玲李生秀. 供氮水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响[J]. 植物学报, 2003, 20(03): 319 -324 .
[4] 宋莉英 谭诤 高峰 邓暑燕. 我国葫芦科植物离体培养研究进展[J]. 植物学报, 2004, 21(03): 360 -366 .
[5] 柯曼琴 张慧 秦月秋. PP333对曲阜香稻茎秆解剖结构的影响初报[J]. 植物学报, 1994, 11(专辑): 76 .
[6] 李俊德 杨健 王宇飞. 山东山旺中新世的水生植物[J]. 植物学报, 2000, 17(专辑): 261 .
[7] 徐景先 王宇飞 杨健 普光荣 张翠芬. 云南第三纪植物群及其古气候的研究进展[J]. 植物学报, 2000, 17(专辑): 84 -94 .
[8] 孙震晓 夏光敏 陈惠民. 新麦草的核型分析[J]. 植物学报, 1995, 12(01): 56 .
[9] 王立军 谷安根 张友民 贾伟平. 南瓜幼苗初生维管系统的解剖学研究[J]. 植物学报, 1994, 11(专辑): 8 -9 .
[10] 郑云普;赵建成*;张丙昌;李琳;张元明. 荒漠生物结皮中藻类和苔藓植物研究进展[J]. 植物学报, 2009, 44(03): 371 -378 .