植物学报 ›› 2019, Vol. 54 ›› Issue (3): 288-292.doi: 10.11983/CBB19035

• 热点评 • 上一篇    下一篇

开启防御之门: 植物抗病小体

夏石头1,*(),李昕2,*()   

  1. 1. 湖南农业大学, 生物科学技术学院, 植物激素与生长发育湖南省重点实验室, 长沙 410128
    2. 加拿大英属哥伦比亚大学, 植物学系, 迈克·史密斯实验中心, 温哥华 V6T 1Z4;
  • 收稿日期:2019-02-23 接受日期:2019-04-03 出版日期:2019-05-01 发布日期:2019-05-20
  • 通讯作者: 夏石头,李昕 E-mail:xstone0505@163.com;xinli@msl.ubc.ca

Open a Door of Defenses: Plant Resistosome

Xia Shitou1,*(),Li Xin2,*()   

  1. 1. Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
    2. Michael Smith Laboratories,Department of Botany, University Columbia,Vancouver, BC, V6T 1Z4,Canada
  • Received:2019-02-23 Accepted:2019-04-03 Online:2019-05-01 Published:2019-05-20
  • Contact: Xia Shitou,Li Xin E-mail:xstone0505@163.com;xinli@msl.ubc.ca

摘要:

NLR蛋白是存在于植物和动物中的一个免疫受体大家族, 具有核苷酸结合域并富含亮氨酸重复序列。植物NLR通过识别病原菌特异效应子开启免疫信号转导。第1个植物NLR抗性蛋白于25年前克隆, 但其激活机制仍不清楚, 至今仍未获得一个完整的NLR蛋白结构。最近, 柴继杰、周俭民和王宏伟实验室合作解析了第一个植物完整NLR ZAR1激活前后的结构, 研究成果以两篇论文形式发表在“科学”杂志上, 填补了NLR介导的免疫信号转导研究领域的空白。该文简要总结了相关研究进展, 讨论了NLR免疫信号转导研究领域尚需解决的问题。

关键词: 植物免疫, NLR, ZAR1, 变构激活, 抗病小体

Abstract:

Nucleotide binding, leucine-rich repeat (NLR) immune receptors are a major family of plant resistance (R) proteins, which are also found in animals. NLRs turn on immune signaling by recognizing pathogen-specific effectors in plants. Although the first few plant NLR R genes were cloned more than 25 years ago, the activation mechanism remained elusive. No structure is available for the full-length plant NLRs despite attempts over the last 2 decades. Recently, studies from the Chai, Zhou and Wang labs, published in Science, solved the structure of zygote arrest 1 (ZAR1) before and after effector recognition, which fills a huge gap in NLR biology. This mini review briefly summarized these findings and related progresses, and highlighted further challenges in NLR-mediated immune signaling field.

Key words: plant immunity, NLR, ZAR1, allosteric activation, resistosome

图1

PBL2UMP诱导的ZAR1抗性小体的激活与装配 野油菜黄单胞菌的效应蛋白AvrAC以尿苷酰化修饰拟南芥PBL2激酶, 尿苷酰化的PBL2UMP作为配体通过与RKS1互作而被ZAR1-RKS1复合物招募。RKS1的激活片段在与PBL2UMP的2个尿苷基部分(球形)相互作用后变得稳定(橙色表面), 并与ZAR1NBD结构域发生立体碰撞, 导致后者向外旋转, 从而释放ADP, 形成可与dATP/ATP结合的中间状态ZAR1-RKS1-PBL2UMP复合体。该复合物结合dATP/ATP后, 诱导ZAR1结构重塑和折叠转换, 隐藏在非活性ZAR1-RKS1复合物中的ZAR1的N顶末端α-螺旋(α1, 红色)暴露在溶剂中, 导致ZAR1完全激活(激活态ZAR1-RKS1-PBL2UMP), 继而通过多聚化形成五聚轮状结构的ZAR1抗性小体(紫色方框内突出显示形成的漏斗状结构)。CC、NBD、HD1、WHD和LRR为ZAR1的不同结构域。"

[1] 施怡婷, 杨淑华 ( 2016). 中国科学家在乙烯信号转导领域取得突破性进展. 植物学报 51, 287-289.
doi: 10.11983/CBB15191
[2] 于倩倩, 孔祥培, 丁兆军 ( 2018). 中国科学家在生长素信号转导领域取得突破性研究进展. 植物学报 50, 535-537.
doi: 10.11983/CBB15115
[3] Bernoux M, Burdett H, Williams SJ, Zhang X, Chen C, Newell K, Lawrence GJ, Kobe B, Ellis JG, Anderson PA, Dodds PN ( 2016). Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-ba-sed switch activation model. Plant Cell 28, 146-159.
doi: 10.1105/tpc.15.00303 pmid: 26744216
[4] Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL ( 2011). Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc Natl Acad Sci USA 108, 16463-16468.
doi: 10.1073/pnas.1113726108 pmid: 21911370
[5] Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG ( 2018). Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol 222, 966-980.
[6] Chisholm ST, Coaker G, Day B, Staskawicz BJ ( 2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803-814.
doi: 10.1016/j.cell.2006.02.008 pmid: 16497589
[7] Cui H, Tsuda K, Parker JE ( 2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66, 487-511.
doi: 10.1146/annurev-arplant-050213-040012 pmid: 25494461
[8] Dodds PN, Rathjen JP ( 2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11, 539-548.
doi: 10.1038/nrg2812 pmid: 20585331
[9] Dong OX, Tong M, Bonardi V, El Kasmi F, Woloshen V, Wünsch LK, Dangl JL, Li X ( 2016). TNL-mediated immunity in Arabidopsis requires complex regulation of the redundant ADR1 gene family. New Phytol 210, 960-973.
doi: 10.1111/nph.13821 pmid: 27074399
[10] Duxbury Z, Ma Y, Furzer OJ, Huh SU, Cevik V, Jones JD, Sarris PF ( 2016). Pathogen perception by NLRs in plants and animals: parallel worlds. Bioessays 38, 769-781.
doi: 10.1002/bies.201600046 pmid: 27339076
[11] Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C, Wang R, Zhang Y, Martinon F, Miao D, Deng H, Wang J, Chang J, Chai J ( 2013). Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341, 172-175.
doi: 10.1126/science.1236381 pmid: 23765277
[12] Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y, Shao F, Wang HW, Sui SF, Chai J ( 2015). Structural and biochemical basis for induced self-propagation of NLRC4. Science 350, 399-404.
doi: 10.1126/science.aac5489 pmid: 26449475
[13] Jones JDG, Dangl JL ( 2006). The plant immune system. Nature 444, 323-329.
doi: 10.1038/nature05286
[14] Lewis JD, Lee AH, Hassan JA, Wan J, Hurley B, Jhingree JR, Wang PW, Lo T, Youn JY, Guttman DS, Desveaux D ( 2013). The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc Natl Acad Sci USA 110, 18722-18727.
[15] Lewis JD, Wu R, Guttman DS, Desveaux D ( 2010). Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein. PLoS Genet 6, e1000894.
[16] Lukasik E, Takken FL ( 2009). STANDing strong, resistance proteins instigators of plant defence. Curr Opin Plant Biol 12, 427-436.
doi: 10.1016/j.pbi.2009.03.001 pmid: 19394891
[17] Maekawa S, Ohto U, Shibata T, Miyake K, Shimizu T ( 2016). Crystal structure of NOD2 and 35 its implications in human disease. Nat Commun 7, 11813.
doi: 10.1038/ncomms11813 pmid: 27283905
[18] Maekawa T, Kufer TA, Schulze-Lefert P ( 2011). NLR functions in plant and animal immune systems: so far and yet so close. Nat Immun 12, 817-826.
doi: 10.1038/ni.2083 pmid: 21852785
[19] Peart JR, Mestre P, Lu R, Malcuit I, Baulcombe DC ( 2005). NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr Biol 15, 968-973.
doi: 10.1016/j.cub.2005.04.053 pmid: 15916955
[20] Qi D, DeYoung BJ, Innes RW ( 2012). Structure-function analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein. Plant Physiol 158, 1819-1832.
doi: 10.1104/pp.112.194035
[21] Qi T, Seong K, Thomazella DPT, Kim JR, Pham J, Seo E, Cho MJ, Schultink A, Staskawicz BJ ( 2018). NRG1 functions downstream of EDS1 to regulate TIR-NLR-me-diated plant immunity in Nicotiana benthamiana. Proc Natl Acad Sci USA 115, E10979-E10987.
[22] Rairdan GJ, Moffett P ( 2006). Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18, 2082-2093.
doi: 10.1105/tpc.106.042747 pmid: 16844906
[23] Reubold TF, Wohlgemuth S, Eschenburg S ( 2011). Crystal structure of full-length Apaf-1: how the death signal is relayed in the mitochondrial pathway of apoptosis. Structure 19, 1074-1083.
doi: 10.1016/j.str.2011.05.013 pmid: 21827944
[24] Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y ( 2005). Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434, 926-933.
doi: 10.1038/nature03465 pmid: 15829969
[25] Schultink A, Qi T, Bally J, Staskawicz B ( 2019). Using forward genetics in Nicotiana benthamiana to uncover the immune signaling pathway mediating recognition of the Xanthomonas perforans effector XopJ4. New Phytol 221, 1001-1009.
[26] Seto D, Koulena N, Lo T, Menna A, Guttman DS, Desveaux D ( 2017). Expanded type III effector recognition by the ZAR1 NLR protein using ZED1-related 5 kinases. Nat Plants 3, 17027.
doi: 10.1038/nplants.2017.27 pmid: 28288096
[27] Tameling WI, Elzinga SD, Darmin PS, Vossen JH, Takken FL, Haring MA, Cornelissen BJ ( 2002). The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14, 2929-2939.
[28] Wang G, Roux B, Feng F, Guy E, Li L, Li N, Zhang X, Lautier M, Jardinaud MF, Chabannes M, Arlat M, Chen S, He C, No?l LD, Zhou JM ( 2015). The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18, 285-295.
doi: 10.1016/j.chom.2015.08.004 pmid: 26355215
[29] Wang J, Wang J, Hu M, Qi J, Wu S, Wang G, Han Z, Qi Y, Gao N, Wang HW, Zhou JM, Chai J ( 2019a). Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364, eaav5868.
[30] Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang HW, Zhou JM, Chai J ( 2019b) . Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870.
[31] Williams SJ, Sornaraj P, deCourcy-Ireland E, Menz RI, Kobe B, Ellis JG, Dodds PN, Anderson PA ( 2011). An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP. Mol Plant Microbe Interact 24, 897-906.
doi: 10.1094/MPMI-03-11-0052
[32] Wu Z, Li M, Dong OX, Xia S, Liang W, Bao Y, Wasteneys G, Li X ( 2018). Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. New Phytol 222, 938-953.
doi: 10.1111/nph.15665
[33] Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL, Marks C, Ouyang Q, Zhang X, Mao Y, Wu H ( 2015). Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350, 404-409.
doi: 10.1126/science.aac5789 pmid: 26449474
[34] Zhou M, Li Y, Hu Q, Bai XC, Huang W, Yan C, Scheres SH, Shi Y ( 2015). Atomic structure of the apoptosome: mechanism of cytochrome c- and 25 dATP-mediated activation of Apaf-1. Genes Dev 29, 2349-2361.
doi: 10.1101/gad.272278.115 pmid: 26543158
[1] 闫佳, 刘雅琼, 侯岁稳. 植物抗病蛋白研究进展[J]. 植物学报, 2018, 53(2): 250-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 于凤兰 王静萍 李京民 单雪琴. 乌桕桕脂中甾醇和其他成分分离鉴定[J]. 植物学报, 1989, 6(02): 121 -123 .
[2] 刘翔宇, 何东, 田文斌, 宋彦君, 尹芳, 许洺山, 程浚洋, 阎恩荣. 浙江普陀山岛森林木本植物的种间关联格局[J]. 植物生态学报, 2017, 41(12): 1219 -1227 .
[3] HUANG Wei-Dong, WU Lan-Kun and ZHAN Ji-Cheng. Effect of Weak Light on the Peroxidation of Membrane-Lipid of Cherry Leaves[J]. Journal of Integrative Plant Biology, 2002, 44(8): 920 -924 .
[4] 陈云明, 梁一民, 程积民. 黄土高原林草植被建设的地带性特征[J]. 植物生态学报, 2002, 26(3): 339 -345 .
[5] . 宁金彪题词[J]. 植物学报, 2000, 17(专辑): 8 -08 .
[6] Jian-Feng LI, Liang-Hu QU and Ning LI. Isolation of a Tomato Protease that May Be Involved in Proteolysis of 1-Aminocyclopropane-1-Carboxylate Synthase[J]. Journal of Integrative Plant Biology, 2005, 47(10): 1220 -1227 .
[7] 方涛, 曾春霞, 杨俊波**, 李德铢. 馆藏植物标本与iFlora[J]. Plant Diversity, 2013, 35(6): 687 -692 .
[8] 刘敏, 孙杉, 李庆军. 两种姜科花柱卷曲性植物柱头的位置与其可授性的关系[J]. 生物多样性, 2007, 15(6): 639 -644 .
[9] 刘维暐1, 陈翠2, 和荣华3, 许琨1. 四种重楼属植物光合作用特征[J]. Plant Diversity, 2013, 35(5): 594 -600 .
[10] Liu Yu-Lan. [J]. Journal of Systematics and Evolution, 1984, 22(4): 319 -320 .