植物学报 ›› 2019, Vol. 54 ›› Issue (3): 296-299.doi: 10.11983/CBB19033

• 热点评 • 上一篇    下一篇

中国科学家发现胞嘧啶单碱基编辑工具存在 基因组范围的脱靶

谢卡斌()   

  1. 华中农业大学, 作物遗传改良国家重点实验室, 武汉 430070
  • 收稿日期:2019-01-21 接受日期:2019-01-22 出版日期:2019-05-01 发布日期:2019-05-20
  • 通讯作者: 谢卡斌 E-mail:kabinxie@mail.hzau.edu.cn

Chinese Scientists Reveal Genome-wide Off-targeted Editing of Cytosine Base Editor

Xie Kabin()   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
  • Received:2019-01-21 Accepted:2019-01-22 Online:2019-05-01 Published:2019-05-20
  • Contact: Xie Kabin E-mail:kabinxie@mail.hzau.edu.cn

摘要:

基于CRISPR-Cas的单碱基编辑工具是近2年基因组编辑技术的重大突破之一, 已经在人类(Homo sapiens)细胞和动植物中得到了验证与应用。最近, 中国科学家分析了胞嘧啶编辑器(CBE) BE3和HF1-BE3, 以及腺嘌呤编辑器(ABE)等单碱基编辑工具在水稻(Oryza sativa)中的脱靶现象, 发现BE3和HF1-BE3两个CBE在全基因组范围内存在脱靶编辑, 而ABE则没有脱靶现象。这一发现对单碱基编辑工具的应用和进一步改进具有重要意义。

关键词: 单碱基编辑, CRISPR, 脱靶

Abstract:

Targeted base editing with CRISPR-Cas systems is a breakthrough in genome editing technologies and is widely used in studies of humans, animals and plants. Recently, Chinese scientists discovered that the cytosine base editor (CBE) including BE3 and HF1-BE3 but not the adenine base editor (ABE) has substantial promise for genome-wide off-targeted editing in rice. This discovery is of great significance to the application and further optimization of targeted base editing.

Key words: base editing, CRISPR, off-targeting

图1

基于CRISPR-Cas9的单碱基编辑(A) 利用脱氨酶进行DNA碱基转换的原理; (B) 胞嘧啶编辑器(CBE, 以BE3为例)和腺嘌呤编辑器(ABE)的结构示意图。L: 连接肽"

[1] Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR ( 2017). Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551, 464-471.
doi: 10.1038/s41586-018-0070-x pmid: 29160308
[2] Hua K, Tao X, Yuan F, Wang D, Zhu JK ( 2018). Precise A·T to G·C base editing in the rice genome. Mol Plant 11, 627-630.
doi: 10.1016/j.molp.2018.02.007
[3] Jin S, Zong Y, Gao Q, Zhu Z, Wang Y, Qin P, Liang C, Wang D, Qiu J, Zhang F, Gao C ( 2019). Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292-295.
[4] Kang BC, Yun JY, Kim ST, Shin Y, Ryu J, Choi M, Woo JW, Kim JS ( 2018). Precision genome engineering th- rough adenine base editing in plants. Nat Plants 4, 427-431.
doi: 10.1038/s41477-018-0178-x
[5] Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR ( 2017). Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35, 371-376.
doi: 10.1038/nbt.3803 pmid: 28191901
[6] Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR ( 2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
doi: 10.1038/nature17946 pmid: 27096365
[7] Li C, Zong Y, Wang Y, Jin S, Zhang D, Song Q, Zhang R, Gao C ( 2018). Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19, 59.
doi: 10.1186/s13059-018-1443-z
[8] Li J, Sun Y, Du J, Zhao Y, Xia L ( 2017). Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant 10, 526-529.
doi: 10.1016/j.molp.2016.12.001 pmid: 27940306
[9] Lu Y, Zhu JK ( 2017). Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10, 523-525.
doi: 10.1016/j.molp.2016.11.013 pmid: 27932049
[10] Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X ( 2016). Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Me- thods 13, 1029-1035.
doi: 10.1038/nmeth.4027 pmid: 27723754
[11] May A ( 2017). Base editing on the rise. Nat Biotechnol 35, 428-429.
doi: 10.1038/nbt.3871 pmid: 28486457
[12] Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z, Kondo A ( 2016). Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729.
doi: 10.1126/science.aaf8729 pmid: 27492474
[13] Rees HA, Liu DR ( 2018). Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19, 770-788.
doi: 10.1038/s41576-018-0059-1
[14] Ren B, Yan F, Kuang Y, Li N, Zhang D, Zhou X, Lin H, Zhou H ( 2018). Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. Mol Plant 11, 623-626.
doi: 10.1016/j.molp.2018.01.005 pmid: 29382569
[15] Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H, Nishida K, Ariizumi T, Kondo A ( 2017). Targeted base editing in rice and tomato using a CRISPR-1)Cas9 cytidine deaminase fusion. Nat Biotechnol 35, 441-443.
doi: 10.1038/nbt.3833 pmid: 28346401
[16] Yan F, Kuang Y, Ren B, Wang J, Zhang D, Lin H, Yang B, Zhou X, Zhou H ( 2018). Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol Plant 11, 631-634.
doi: 10.1016/j.molp.2018.02.008
[17] Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C ( 2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35, 438-440.
doi: 10.1038/nbt.3811 pmid: 28244994
[18] Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz LM, Li Y, Yang H ( 2019). Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289-292.
[1] 苏钺凯,邱镜仁,张晗,宋振巧,王建华. CRISPR/Cas9系统在植物基因组编辑中技术改进与创新的研究进展[J]. 植物学报, 2019, 54(3): 385-395.
[2] 王影, 李相敢, 邱丽娟. CRISPR/Cas9基因组定点编辑中脱靶现象的研究进展[J]. 植物学报, 2018, 53(4): 528-541.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhi-Duan Chen, Tuo Yang, Li Lin, Li-Min Lu, Hong-Lei Li, Miao Sun, Bing Liu, Min Chen, Yan-Ting Niu, Jian-Fei Ye, Zhi-Yong Cao, Hong-Mei Liu, Xiao-Ming Wang, Wei Wang, Jing-Bo Zhang, Zhen Meng, Wei Cao, Jian-Hui Li, Sheng-Dan Wu, Hui-Ling Zhao, Zhong-Jian Liu, Zhi-Yuan Du, Qing-Feng Wang, Jing Guo, Xin-Xin Tan, Jun-Xia Su, Lin-Jing Zhang, Lei-Lei Yang, Yi-Ying Liao, Ming-He Li, Guo-Qiang Zhang, Shih-Wen Chung, Jian Zhang, Kun-Li Xiang, Rui-Qi Li, Douglas E. Soltis, Pamela S. Soltis, Shi-Liang Zhou, Jin-Hua Ran, Xiao-Quan Wang, Xiao-Hua Jin, You-Sheng Chen, Tian-Gang Gao, Jian-Hua Li, Shou-Zhou Zhang, An-Ming Lu, China Phylogeny Consortium. [J]. Journal of Systematics and Evolution, 2016, 54(4): 277 -306 .
[2] Monica Boscaiu, Cristina Lull, Josep Llinares, Oscar Vicente, Herminio Boira. Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species[J]. Journal of Plant Ecology, 2013, 6(2): 177 -186 .
[3] 陈永俊, 张静, 宋普庆, 张然, 李渊, 钟指挥, 林龙山. 台湾海峡鱼类组成及其生态区系[J]. 生物多样性, 2014, 22(4): 525 -531 .
[4] 伍自力, 余孟瑶, 陈露, 魏静, 王晓琴, 胡勇, 闫妍, 万平. 小立碗藓对重金属镉胁迫的应答特征[J]. 植物学报, 2015, 50(2): 171 -179 .
[5] 赵耀, 陈家宽. 长江流域农作物起源及其与生物多样性特征的关联[J]. 生物多样性, 2018, 26(4): 333 -345 .
[6] Yihao Shi, Jiaying Huang, Tianshu Sun, Xuefei Wang, Chenqi Zhu, Yuxi Ai and Hongya Gu. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana[J]. Journal of Integrative Plant Biology, 2017, 59(2): 118 -133 .
[7] 温学发, 张世春, 孙晓敏, 于贵瑞. 叶片水H218O富集的研究进展[J]. 植物生态学报, 2008, 32(4): 961 -966 .
[8] Giovanna Serino, and Qi Xie. The Ever Expanding Role of Ubiquitin and SUMO in Plant Biology[J]. Journal of Integrative Plant Biology, 2013, 55(1): 5 -6 .
[9] 张长芹;冯宝钧;吕元林. 杜鹃花属的杂交育种研究[J]. Plant Diversity, 1998, 20(01): 1 -3 .
[10] 师伟, 王政权, 刘金梁, 谷加存, 郭大立. 帽儿山天然次生林20个阔叶树种细根形态[J]. 植物生态学报, 2008, 32(6): 1217 -1226 .