植物学报 ›› 2018, Vol. 53 ›› Issue (2): 149-153.doi: 10.11983/CBB18039

• 热点评 •    下一篇

解析植物冷信号转导途径: 植物如何感知低温

段志坤, 秦晓惠, 朱晓红, 宋纯鹏*()   

  1. 河南大学生命科学学院, 棉花生物学国家重点实验室, 植物逆境生物学重点实验室, 开封 475004
  • 收稿日期:2018-02-03 接受日期:2018-03-08 出版日期:2018-03-01 发布日期:2018-08-10
  • 通讯作者: 宋纯鹏 E-mail:songcp@henu.edu.cn

Making Sense of Cold Signaling: ICE is Cold or not Cold?

Duan Zhikun, Qin Xiaohui, Zhu Xiaohong, Song Chunpeng*()   

  1. Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
  • Received:2018-02-03 Accepted:2018-03-08 Online:2018-03-01 Published:2018-08-10
  • Contact: Song Chunpeng E-mail:songcp@henu.edu.cn

摘要:

低温胁迫(冷害和冻害)严重影响植物的生长发育和地理分布, 是制约作物产量和品质的主要因素之一。在自然界, 植物通过感知低温信号并启动一系列响应机制来抵御冷冻伤害。MAP蛋白激酶家族在植物响应逆境胁迫信号过程中发挥重要作用, 但其是否参与冷冻胁迫信号传递仍不清楚。最近, 朱健康、杨淑华和种康研究团队先后报道了拟南芥(Arabidopsis thaliana)和水稻(Oryza sativa)通过MAPK级联反应途径参与冷冻胁迫应答反应, 通过磷酸化ICE1来调控其稳定性, 并阐明了ICE1提高植物抗冷冻能力的分子机制。他们的研究完善了ICE1介导的低温应答网络, 是植物低温应答研究领域的重要突破, 并为未来的作物分子设计育种提供了强有力的理论依据。

关键词: 低温应答, 磷酸化, MAPK级联反应, ICE1, OsTPP1

Abstract:

Cold (chilling or freezing) stress affects the growth and geographical distribution of plants, and it is one of the main factors that restricts crop yield and quality. Plants respond to cold signals by activating a series of effectors to adapt to cold stress. MAP protein kinase family plays a crucial role in plant response to environmental stresses, but it remains unclear whether they are directly involved in perception, transduction or/and networks in cold signaling. Recently, three research groups in China highlight the important role of MAP kinase in cold signaling transduction in Arabidopsis thaliana and rice, respectively. Low temperature activates MPK kinase that phosphorylates the ICE1 protein. Stability of ICE1 is controlled by MAP kinase mediated ICE phosphorylation, thus regulating freezing and chilling tolerance in plants. Their studies have advanced our understanding of the ICE1-mediated network of plant cold responses, which is an important breakthrough in the field. The outcome of these studies would provide a powerful theoretical basis for future molecular design breeding in crops.

Key words: cold response, phosphorylation, MAPK cascades, ICE1, OsTPP1

图1

MAP激酶级联反应调控拟南芥和水稻低温应答的工作模型低温刺激诱导细胞质钙信号的变化。在拟南芥中, 作为钙调蛋白的类受体激酶CRLK1和CRLK2被快速激活, 启动MEKK1-MKK2- MPK4信号级联, 抑制了MPK3/6活性, 正调控植物抗冷反应。另一个信号通路MKK4/5-MPK3/6同样被冷胁迫快速诱导, 在MKK5存在的情况下, MPK3/6被激活, 磷酸化ICE1, 促进其降解, CBFs转录水平下降, 负调控植物抗冷反应。MPK3/6诱导的ICE1降解, 与HOS1泛素化降解过程无关。同时, OST1也可磷酸化ICE1, 但其磷酸化作用抑制HOS1对ICE1的泛素化降解, 从而起到正调控作用。在水稻中, 冷胁迫诱导OsMAPK3激活, 而后磷酸化OsICE1。同时, OsMAPK3抑制OsHOS1和OsICE1的结合, 进而抑制OsICE1的降解, 维持了OsICE1的稳定。被磷酸化的OsICE1激活OsTPP1的转录, 促进海藻糖的累积, 增强水稻耐冷能力。(箭头代表激活, 短横线代表抑制, 虚线代表机制尚不清楚。红色线代表拟南芥内信号通路, 黑色线代表水稻内信号通路)"

[1] 刘静妍, 施怡婷, 杨淑华 (2017). CBF: 平衡植物低温应答与生长发育的关键. 植物学报 52, 689-698.
[2] Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003). ICE1: a regulator of cold- induced transcriptome and freezing tolerance in Arabidopsis.Genes Dev 17, 1043-1054.
[3] Ding YL, Li H, Zhang XY, Xie Q, Gong ZZ, Yang SH (2015). OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis.Dev Cell 32, 278-289.
[4] Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1.Proc Natl Acad Sci USA 103, 8281-8286.
[5] Furuya T, Matsuoka D, Nanmori T (2013). Phosphorylation of Arabidopsis thaliana MEKK1 via Ca2+ signaling as a part of the cold stress response. J Plant Res 126, 833-840.
[6] Jia YX, Ding YL, Shi YT, Zhang XY, Gong ZZ, Yang SH (2016). The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol 212, 345-353.
[7] Kim SH, Oikawa T, Kyozuka J, Wong HL, Umemura K, Kishi-Kaboshi M, Takahashi A, Kawano Y, Kawasaki T, Shimamoto K (2012). The bHLH Rac Immunity1 (RAI1) is activated by OsRac1 via OsMAPK3 and OsMAPK6 in rice immunity.Plant Cell Physiol 53, 740-754.
[8] Li B, Jiang S, Yu X, Cheng C, Chen SX, Cheng YB, Yuan JS, Jiang DH, He P, Shan LB (2015). Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity.Plant Cell 27, 839-856.
[9] Li H, Ding YL, Shi YT, Zhang XY, Zhang SQ, Gong ZZ, Yang SH (2017). MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis.Dev Cell 43, 630-642.
[10] Li HW, Zang BS, Deng XW, Wang XP (2011). Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234, 1007-1018.
[11] Lourenco T, Sapeta H, Figueiredo DD, Rodrigues M, Cordeiro A, Abreu IA, Saibo NJ, Oliveira MM (2013). Isolation and characterization of rice (Oryza sativa L.) E3-ubiquitin ligase OsHOS1 gene in the modulation of cold stress response. Plant Mol Biol 83, 351-363.
[12] Ma Y, Dai XY, Xu YY, Luo W, Zheng XM, Zeng DL, Pan YJ, Lin XL, Liu HX, Zhang DJ, Xiao J, Guo XY, Xu SJ, Niu YD, Jin JB, Zhang H, Xu X, Li LG, Wang W, Qian Q, Ge S, Chong K (2015). COLD1 confers chilling tolerance in rice. Cell 160, 1209-1221.
[13] Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007). SIZ1-mediated sumoylation of ICE1 controls CBF3/ DREB1A expression and freezing tolerance in Arabidopsis.Plant Cell 19, 1403-1414.
[14] Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y, Haque E, Basu SS, Lagrimini ML (2015). Expression of trehalose-6- phosphate phosphatase in maize ears improves yield in well-watered and drought conditions.Nat Biotechnol 33, 862-869.
[15] Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004). The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis.Mol Cell 15, 141-152.
[16] Wingler A (2002). The function of trehalose biosynthesis in plants. Phytochemistry 60, 437-440.
[17] Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW (2010). A calcium/calmodulin-regulated member of the receptor- like kinase family confers cold tolerance in plants.J Biol Chem 285, 7119-7126.
[18] Zhang ZY, Li JH, Li F, Liu HH, Yang WS, Chong K, Xu YY (2017). OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and en- hances rice chilling tolerance.Dev Cell 43, 731-743.
[19] Zhao C, Wang P, Si T, Hsu CC, Wang L, Zayed O, Yu Z, Zhu Y, Dong J, Tao WA, Zhu JK (2017). MAP kinase cascades regulate the cold response by modulating ICE1 protein stability.Dev Cell 43, 618-629.
[20] Zhao CZ, Zhang ZJ, Xie SJ, Si T, Li YY, Zhu JK (2016). Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis.Plant Phy- siol 171, 2744-2759.
[1] 朱丹, 曹汉威, 李媛, 任东涛. 植物蛋白磷酸化的检测方法[J]. 植物学报, 2020, 55(1): 76-82.
[2] 张静,侯岁稳. 蛋白质翻译后修饰在ABA信号转导中的作用[J]. 植物学报, 2019, 54(3): 300-315.
[3] 刘雅琼,侯岁稳. 蛋白磷酸化修饰在植物-病原微生物互作中的作用研究进展[J]. 植物学报, 2019, 54(2): 168-184.
[4] 曹文杰, 李贵生. 生长素输出载体PIN蛋白的质膜定位机制[J]. 植物学报, 2016, 51(2): 265-273.
[5] 张曦, 林金星, 单晓昳. 拟南芥无机氮素转运蛋白及其磷酸化调控研究进展[J]. 植物学报, 2016, 51(1): 120-129.
[6] 岳晶, 管利萍, 孟思远, 张静, 侯岁稳. 光色素信号通路中磷酸化修饰研究进展[J]. 植物学报, 2015, 50(2): 241-254.
[7] 赖辉煌 王宏斌 王金发. PTP 及其在植物MAPK 途径中的作用[J]. 植物学报, 2007, 24(05): 677-685.
[8] 杨洪强 接玉玲 李林光. 脱落酸信号转导研究进展[J]. 植物学报, 2001, 18(04): 427-435.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈馥衡 范浚深. 新型切花保鲜剂氨氧基乙酸[J]. 植物学报, 1988, 5(02): 127 .
[2] 周广胜 邢雪荣 王辉民. 植被在全球气候变化中的作用[J]. 植物学报, 1995, 12(专辑2): 190 -194 .
[3] 周青 杨静 邵爱华 王雅玲. NaHSO3 对水稻幼苗根系生长及生理活性影响的研究[J]. 植物学报, 1998, 15(03): 51 -53 .
[4] 韩燕来 徐芳森 段海燕 石磊 王运华. 拟南芥养分离子转运蛋白研究进展[J]. 植物学报, 2003, 20(01): 23 -35 .
[5] 吴杰, 赵鑫, 宁伟. 东北地区蒲公英属瘦果微形态特征及其分类学意义[J]. 植物学报, 2011, 46(4): 437 -446 .
[6] 董淼, 黄越, 陈文铎, 徐涛, 郎秋蕾. 降解组测序技术在植物miRNA研究中的应用[J]. 植物学报, 2013, 48(3): 344 -353 .
[7] 种云霄, 于丹, 夏盛林, 康辉. 秦岭太白县水生—沼生植物区系地理的初步研究[J]. 植物生态学报, 1999, 23(199901): 28 -38 .
[8] 刘锺龄. 内蒙古的针茅草原[J]. 植物生态学报, 1963, (2): 156 -157 .
[9] 王琼, 廖咏梅. 林缘和荒草坡不同草本层盖度小生境中积雪草的等级可塑性[J]. 植物生态学报, 2007, 31(4): 576 -587 .
[10] 胡肄慧, 陈灵芝, 陈清郎, 孔繁志, 缪有贵. 几种树木枯叶分解速率的试验研究[J]. 植物生态学报, 1987, 11(2): 124 -132 .