Chinese Bulletin of Botany ›› 2018, Vol. 53 ›› Issue (4): 519-527.DOI: 10.11983/CBB18007
• TECHNIQUES AND METHODS • Previous Articles Next Articles
Ai Wenqin1, Jiang Hanyuan1, Li Xinxin2, Liao Hong2,*()
Received:
2018-01-09
Accepted:
2018-02-12
Online:
2018-07-01
Published:
2018-09-11
Contact:
Liao Hong
About author:
These authors contributed equally to this paper
Ai Wenqin, Jiang Hanyuan, Li Xinxin, Liao Hong. An Efficient Nutrient Solution System to Study Symbiotic Nitrogen Fixation in Soybean[J]. Chinese Bulletin of Botany, 2018, 53(4): 519-527.
Figure 1 Effects of nitrogen supply on soybean nodulation(A) Nodule number; (B) Nodules fresh weight; (C) Average nodules fresh weight. V4 and R1 represent different growth stages of soybean. N1-N5 indicate 300 μmol·L-1, 900 μmol·L-1, 2 400 μmol·L-1, 4 800 μmol·L-1 and 7 200 μmol·L-1 nitrogen level, respectively. Different lowercase letters indicate significant differences among different N supply levels (P<0.05).
Figure 2 Effects of nitrogen supply on nitrogenase activity at different growth stages of soybean(A) V4 stage; (B) R1 stage. N1-N5 see Figure 1. Different lowercase letters indicate significant differences among different N supply levels (P<0.05).
F value | Shoot dry weight | Root dry weight | Grain weight | Hundred grain weight |
---|---|---|---|---|
N | 67.15*** | 134.57*** | 50.75*** | 36.33*** |
R | 0.89* | 2.11* | 49.53*** | 0.398 |
N×R | 4.31* | 14.80*** | 8.31*** | 4.45** |
Table 1 Effect of nitrogen supply levels and inoculation of rhizobium on soybean growth and yield
F value | Shoot dry weight | Root dry weight | Grain weight | Hundred grain weight |
---|---|---|---|---|
N | 67.15*** | 134.57*** | 50.75*** | 36.33*** |
R | 0.89* | 2.11* | 49.53*** | 0.398 |
N×R | 4.31* | 14.80*** | 8.31*** | 4.45** |
Figure 3 Effects of nitrogen supply on soybean growth(A) Up-ground dry weight; (B) Root dry weight. N1-N5 see Figure 1. Different lowercase letters indicate significant differences among different N supply levels (P<0.05).
Figure 4 Effects of nitrogen supply levels on soybean yield(A) Pictures of soybean seeds; (B) Grain weight; (C) Hundred grain weight. N1-N5 see Figure 1. Different lowercase letters indicate significant differences among different N supply levels (P<0.05).
Figure 5 Effects of rhizobium inoculation on soybean nodule growth and nitrogenase activity(A) Pictures of nodules; (B) Nodule number; (C) Nodule dry weight; (D) Nitrogenase activity. Different lowercase letters indicate significant differences among different growth stages of soybean (P<0.05).
Figure 6 Soybean yield as affected by different nitrogen or rhizobia inoculation treatments(A) Pod number; (B) Grain number; (C) Grain weight; (D) Hundred grain weight. LN-R: Low N without inoculation treatment; LN+R: Low N with inoculation treatment; HN-R: High N without inoculation treatment. Different lowercase letters indicate significant differences among different treatments (P<0.05).
1 | 陈文新, 陈文峰 (2004). 发挥生物固氮作用减少化学氮肥用量. 中国农业科技导报 6(6), 3-6. |
2 | 程凤娴, 曹桂芹, 王秀荣, 赵静, 严小龙, 廖红 (2008). 华南酸性低磷土壤中大豆根瘤菌高效株系的发现及应用. 科学通报 53, 2903-2910. |
3 | 邸伟, 金喜军, 马春梅, 龚振平, 董守坤, 张磊 (2010). 施氮水平对大豆氮素积累与产量影响的研究. 核农学报 24, 612-617. |
4 | 胡浩南, 敖俊华, 黄晓财, 李欣欣, 廖红 (2017). 甘蔗不同组织联合固氮能力评价. 植物生理学报 53, 437-444. |
5 | 李欣欣, 许锐能, 廖红 (2016). 大豆共生固氮在农业减肥增效中的贡献及应用潜力. 大豆科学 35, 531-535. |
6 | 李艳, 盖钧镒 (2017). 大豆向热带地区发展的遗传基础. 植物学报 52, 389-393. |
7 | 李宗盛, 李展辉, 邓建军 (1986). 不同时期施氮对大豆产量影响的研究. 土壤肥料 (6), 46-47. |
8 | 罗进, 曹智 (2017). 2016年国内外大豆市场回顾及2017年展望. 中国畜牧杂志 53(4), 160-165, 178. |
9 | 彭玉新 (2009). 施肥对大豆产量及品质的影响研究. 现代农业科技(18), 19, 21. |
10 | 王庆胜 (2010). 根瘤菌对大豆产量及品质的影响. 黑龙江农业科学(9), 138, 147. |
11 | Alam F, Bhuiyan MAH, Alam SS, Waghmode TR, Kim PJ, Lee YB (2015). Effect of Rhizobium sp. BARIRGm901 ino- culation on nodulation, nitrogen fixation and yield of soybean(Glycine max) genotypes in gray terrace soil. Biosci Biotechnol Biochem 79, 1660-1668. |
12 | Alves BJR, Boddey RM, Urquiaga S (2003). The success of BNF in soybean in Brazil.Plant Soil 252, 1-9. |
13 | Brewin NJ (1991). Development of the legume root nodule.Annu Rev Cell Biol 7, 191-226. |
14 | Daimon H, Hori K, Shimizu A, Nakagawa M (1999). Nitrate-induced inhibition of root nodule formation and nitrogenase activity in the peanut (Arachis hypogaea L.). Plant Prod Sci 2, 81-86. |
15 | Fujikake H, Yamazaki A, Ohtake N, Sueyoshi K, Matsuhashi S, Ito T, Mizuniwa C, Kume T, Hashimoto S, Ishioka NS, Watanabe S, Osa A, Sekine T, Uchida H, Tsuji A, Ohyama T (2003). Quick and reversible inhibition of soybean root nodule growth by nitrate involves a decrease in sucrose supply to nodules.J Exp Bot 54, 1379-1388. |
16 | Gan YB, Stulen I, van Keulen H, Kuiper PJC (2004). Low concentrations of nitrate and ammonium stimulate nodulation and N2 fixation while inhibiting specific nodulation (nodule DW·g-1 root dry weight) and specific N2 fixation (N2 fixed·g-1 root dry weight) in soybean.Plant Soil 258, 281-292. |
17 | Hungria M, Campo RJ, Mendes IC (2005). Reinoculation increasing soybean grain yield in Brazil. In: Proceedings of the 14th International Nitrogen Fixation Congress. Dordrecht: Springer. pp. 315-315. |
18 | Hungria M, Franchini JC, Campo RJ, Crispino CC, Mor- aes JZ, Sibaldelli RNR, Mendes IC, Arihara J (2006). Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and N fertilizer to grain yield.Can J Plant Sci 86, 927-939. |
19 | Li XX, Zhao J, Tan ZY, Zeng RS, Liao H (2015). GmEXPB2, a cell wall β-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development.Plant Physiol 169, 2640-2653. |
20 | Qin L, Jiang H, Tian J, Zhao J, Liao H (2011). Rhizobia enhance acquisition of phosphorus from different sources by soybean plants.Plant Soil 349, 25-36. |
21 | Qin L, Zhao J, Tian J, Chen LY, Sun ZA, Guo YX, Lu X, Gu M, Xu GH, Liao H (2012). The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodu- les and nodulation in soybean.Plant Physiol 159, 1634-1643. |
22 | Saito A, Tanabata S, Tanabata T, Tajima S, Ueno M, Ishikawa S, Ohtake N, Sueyoshi K, Ohyama T (2014). Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) Merr.). Int J Mol Sci 15, 4464-4480. |
23 | Tang F, Yang SM, Liu JG, Zhu HY (2016). Rj4, a gene controlling nodulation specificity in soybeans, encodes a thau- matin-like protein but not the one previously reported. Plant Physiol 170, 26-32. |
24 | Wang D, Yang SM, Tang F, Zhu HY (2012). Symbiosis specificity in the legume-rhizobial mutualism.Cell Microbiol 14, 334-342. |
[1] | zeng shaohai. Research on intercropping effect and nitrogen transfer characteristics of Oat and Mungbean [J]. Chinese Bulletin of Botany, 2023, 58(1): 0-0. |
[2] | YU Shui-Jin, WANG Juan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Impact and mechanism of maintaining biomass stability in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 632-641. |
[3] | Liu Xiaolong, Ji Ping, Yang Hongtao, Ding Yongdian, Fu Jialing, Liang Jiangxia, Yu Congcong. Priming Effect of Abscisic Acid on High Temperature Stress During Rice Heading-flowering Stage [J]. Chinese Bulletin of Botany, 2022, 57(5): 596-610. |
[4] | Wang Lei, Chong Kang. Choice of both Ways: Variations of Reverted Repeats Balance Environmental Adaptation and Yield in Maize [J]. Chinese Bulletin of Botany, 2022, 57(5): 555-558. |
[5] | Yunhui Wang, Yifan Wang, Jiayu Lin, Jinhong Li, Shien Yao, Xiangchi Feng, Zhenlin Cao, Jun Wang, Meina Li. Plant Kinesin: from Microtubule Arrays to Physiological Regulation [J]. Chinese Bulletin of Botany, 2022, 57(3): 358-374. |
[6] | XIONG Shu-Ping, CAO Wen-Bo, CAO Rui, ZHANG Zhi-Yong, FU Xin-Lu, XU Sai-Jun, PAN Hu-Qiang, WANG Xiao-Chun, MA Xin-Ming. Effects of horizontal structure on canopy vertical structure, microenvironment and yield of Triticum aestivum [J]. Chin J Plant Ecol, 2022, 46(2): 188-196. |
[7] | Yong LIN Zhi Chen Shi-Ping CHEN ran liu Xiao-Ping XIN Gui-Rui YU. Temporal and spatial variations of ecosystem photosynthetic parameters in arid and semi-arid areas of China and its influencing factors [J]. Chin J Plant Ecol, 2022, 46(12): 1461-1472. |
[8] | Jian-Min Zhou. A Ca2+-ROS Signaling Axis in Rice Provides Clues to Rice-pathogen Coevolution and Crop Improvements [J]. Chinese Bulletin of Botany, 2021, 56(5): 513-515. |
[9] | Mengke Du, Wenting Lian, Xiao Zhang, Xinxin Li. Effects of Nitrogen Application on Nitrogen Fixation Capacity and GmLbs Expression in Soybean [J]. Chinese Bulletin of Botany, 2021, 56(4): 391-403. |
[10] | LI Qiang, HUANG Ying-Xin, ZHOU Dao-Wei, CONG Shan. Mechanism of the trade-off between biological nitrogen fixation and phosphorus acquisition strategies of herbaceous legumes under nitrogen and phosphorus addition [J]. Chin J Plant Ecol, 2021, 45(3): 286-297. |
[11] | LI Zhou-Yuan, YE Xiao-Zhou, WANG Shao-Peng. Ecosystem stability and its relationship with biodiversity [J]. Chin J Plant Ecol, 2021, 45(10): 1127-1139. |
[12] | Yan Wang, Bowei Jia, Mingzhe Sun, Xiaoli Sun. Advances in Molecular Mechanisms of Stress Tolerance in Wild Soybean [J]. Chinese Bulletin of Botany, 2021, 56(1): 104-115. |
[13] | WANG Yin-Liu, GENG Qian-Qian, HUANG Jian-Hui, WANG Chang-Hui, LI Lei, HASI Muqier, NIU Guo-Xiang. Effects of nitrogen addition and planting density on the growth and biological nitrogen fixation of Lespedeza davurica [J]. Chin J Plant Ecol, 2021, 45(1): 13-22. |
[14] | Zhengjun Xia, Yuzhuo Li, Jinlong Zhu, Hongyan Wu, Kun Xu, Hong Zhai. A Rapid, Non-destructive and Continuous Sampling Technique and DNA Extraction for Soybean Seed [J]. Chinese Bulletin of Botany, 2021, 56(1): 56-61. |
[15] | LI Song-Song, WANG Ning-Xin, ZHENG Wei, ZHU Ya-Qiong, WANG Xiang, MA Jun, ZHU Jin-Zhong. Comparison of transgressive overyielding effect and plant diversity effects of annual and perennial legume-grass mixtures [J]. Chin J Plant Ecol, 2021, 45(1): 23-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||