Chinese Bulletin of Botany ›› 2018, Vol. 53 ›› Issue (3): 322-333.DOI: 10.11983/CBB17030
Special Issue: 药用植物专辑 (2018年53卷3期)
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Wang Yucai1, Zhang Hengjia1,*(), Deng Haoliang2, Wang Shijie2, Ba Yuchun3
Received:
2017-02-24
Accepted:
2017-05-03
Online:
2018-05-01
Published:
2018-09-11
Contact:
Zhang Hengjia
Wang Yucai, Zhang Hengjia, Deng Haoliang, Wang Shijie, Ba Yuchun. Effect of Regulated Deficit Irrigation on Water Use and Yield of Isatis indigotica[J]. Chinese Bulletin of Botany, 2018, 53(3): 322-333.
Treatments | Seedling stage | Vegetative stage | Fleshy root growth stage | Fleshy root maturity stage |
---|---|---|---|---|
CK | 75-85 | 75-85 | 75-85 | 75-85 |
WD1 | 75-85 | 65-75 | 75-85 | 75-85 |
WD2 | 75-85 | 55-65 | 75-85 | 75-85 |
WD3 | 75-85 | 45-55 | 75-85 | 75-85 |
WD4 | 75-85 | 65-75 | 65-75 | 75-85 |
WD5 | 75-85 | 65-75 | 55-65 | 75-85 |
WD6 | 75-85 | 55-65 | 65-75 | 75-85 |
WD7 | 75-85 | 55-65 | 55-65 | 75-85 |
WD8 | 75-85 | 45-55 | 65-75 | 75-85 |
WD9 | 75-85 | 45-55 | 55-65 | 75-85 |
Table 1 Soil moisture contents of different treatments (percentage of field capacity)
Treatments | Seedling stage | Vegetative stage | Fleshy root growth stage | Fleshy root maturity stage |
---|---|---|---|---|
CK | 75-85 | 75-85 | 75-85 | 75-85 |
WD1 | 75-85 | 65-75 | 75-85 | 75-85 |
WD2 | 75-85 | 55-65 | 75-85 | 75-85 |
WD3 | 75-85 | 45-55 | 75-85 | 75-85 |
WD4 | 75-85 | 65-75 | 65-75 | 75-85 |
WD5 | 75-85 | 65-75 | 55-65 | 75-85 |
WD6 | 75-85 | 55-65 | 65-75 | 75-85 |
WD7 | 75-85 | 55-65 | 55-65 | 75-85 |
WD8 | 75-85 | 45-55 | 65-75 | 75-85 |
WD9 | 75-85 | 45-55 | 55-65 | 75-85 |
Figure 2 Profile soil water distribution in 0-100 cm layer in different growth stages of Isatis indigotica (A) Seedling stage; (B) Vegetative stage; (C) Fleshy root growth stage; (D) Fleshy root maturity stage. CK, and WD1-WD9 are the same as in Table 1.
Figure 3 Plant height (A) and main root length (B) of Isatis indigotica subjected to limited irrigation treatmentCK, and WD1-WD9 are the same as in Table 1.
Treatments | Plant height (cm) | Stem and leaf biomass (g∙plant-1) | Taproot length (cm) | Taproot diameter (cm) | Root biomass (g∙plant-1) | Root/shoot ratio |
---|---|---|---|---|---|---|
CK | 28.14±0.15 a | 13.09±0.18 a | 22.09±0.37 b | 1.69±0.03 a | 11.36±0.43 b | 0.868 |
WD1 | 27.94±0.51 a | 13.22±0.25 a | 22.80±0.92 ab | 1.66±0.04 a | 13.21±0.35 a | 0.999 |
WD2 | 26.65±0.28 b | 11.95±0.83 bc | 19.83±0.38 c | 1.47±0.02 bc | 10.96±0.19 b | 0.921 |
WD3 | 22.45±0.94 cd | 10.87±0.57 d | 19.05±0.75 cd | 1.42±0.06 c | 9.57±0.34 c | 0.883 |
WD4 | 27.52±0.11 ab | 12.52±0.40 ab | 23.17±0.86 a | 1.72±0.05 a | 13.39±0.37 a | 1.070 |
WD5 | 27.11±0.47 ab | 11.67±0.52 cd | 19.29±0.37 d | 1.50±0.02 b | 10.02±0.25 c | 0.871 |
WD6 | 26.45±0.28 b | 11.45±0.49 cd | 19.72±0.79 c | 1.41±0.11 c | 10.13±0.40 c | 0.878 |
WD7 | 22.95±0.39 c | 11.46±0.11 cd | 18.59±1.32 d | 1.45±0.02 c | 9.53±0.38 c | 0.854 |
WD8 | 21.87±1.71 d | 9.86±0.36 e | 16.40±0.36 e | 1.23±0.03 d | 7.50±0.15 d | 0.762 |
WD9 | 21.74±0.75 d | 9.73±0.33 e | 16.33±0.79 e | 1.18±0.06 d | 7.10±0.37 c | 0.730 |
Table 2 Effect of water deficit on biological characteristics of Isatis indigotica
Treatments | Plant height (cm) | Stem and leaf biomass (g∙plant-1) | Taproot length (cm) | Taproot diameter (cm) | Root biomass (g∙plant-1) | Root/shoot ratio |
---|---|---|---|---|---|---|
CK | 28.14±0.15 a | 13.09±0.18 a | 22.09±0.37 b | 1.69±0.03 a | 11.36±0.43 b | 0.868 |
WD1 | 27.94±0.51 a | 13.22±0.25 a | 22.80±0.92 ab | 1.66±0.04 a | 13.21±0.35 a | 0.999 |
WD2 | 26.65±0.28 b | 11.95±0.83 bc | 19.83±0.38 c | 1.47±0.02 bc | 10.96±0.19 b | 0.921 |
WD3 | 22.45±0.94 cd | 10.87±0.57 d | 19.05±0.75 cd | 1.42±0.06 c | 9.57±0.34 c | 0.883 |
WD4 | 27.52±0.11 ab | 12.52±0.40 ab | 23.17±0.86 a | 1.72±0.05 a | 13.39±0.37 a | 1.070 |
WD5 | 27.11±0.47 ab | 11.67±0.52 cd | 19.29±0.37 d | 1.50±0.02 b | 10.02±0.25 c | 0.871 |
WD6 | 26.45±0.28 b | 11.45±0.49 cd | 19.72±0.79 c | 1.41±0.11 c | 10.13±0.40 c | 0.878 |
WD7 | 22.95±0.39 c | 11.46±0.11 cd | 18.59±1.32 d | 1.45±0.02 c | 9.53±0.38 c | 0.854 |
WD8 | 21.87±1.71 d | 9.86±0.36 e | 16.40±0.36 e | 1.23±0.03 d | 7.50±0.15 d | 0.762 |
WD9 | 21.74±0.75 d | 9.73±0.33 e | 16.33±0.79 e | 1.18±0.06 d | 7.10±0.37 c | 0.730 |
Figure 4 Changes of leaf area index (LAI) (A) and photosynthetic rate (Pn) (B) at different growth stages of Isatis indigoticaCK, and WD1-WD9 are the same as in Table 1.
Figure 5 Effect of water deficit on (R,S)-goitrin of Isatis indigoticaCK, and WD1-WD9 are the same as in Table 1. Different lowercase letters indicate significant differences at P<0.05 among different treatments.
Treatments | Precipitation (mm) | Total irrigation water (mm) | Total water consumption (mm) | Yield (kg∙hm-2) | IWUE (kg∙hm-2·mm-1) | WUE (kg∙hm-2·mm-1) |
---|---|---|---|---|---|---|
CK | 185.8 | 163.24 | 374.04 | 8315.58 a | 50.94 b | 22.23 b |
WD1 | 185.8 | 152.48 | 343.28 | 8239.56 a | 54.04 a | 24.01 a |
WD2 | 185.8 | 147.25 | 353.05 | 7219.67 b | 49.03 c | 20.45 d |
WD3 | 185.8 | 135.12 | 335.92 | 6894.60 d | 51.03 b | 20.52 d |
WD4 | 185.8 | 150.25 | 340.85 | 8215.52 a | 54.67 a | 24.11 a |
WD5 | 185.8 | 145.26 | 346.06 | 7164.91 bc | 49.32 c | 20.70 cd |
WD6 | 185.8 | 142.58 | 338.38 | 7083.69 c | 49.68 c | 20.93 c |
WD7 | 185.8 | 137.76 | 338.56 | 6965.85 d | 50.57 b | 20.57 d |
WD8 | 185.8 | 115.23 | 316.03 | 5311.57 e | 46.10 d | 16.81 e |
WD9 | 185.8 | 112.47 | 315.27 | 5228.54 e | 46.48 d | 16.58 e |
Table 3 Effect of different water deficit on yield and water use efficiency of Isatis indigotica
Treatments | Precipitation (mm) | Total irrigation water (mm) | Total water consumption (mm) | Yield (kg∙hm-2) | IWUE (kg∙hm-2·mm-1) | WUE (kg∙hm-2·mm-1) |
---|---|---|---|---|---|---|
CK | 185.8 | 163.24 | 374.04 | 8315.58 a | 50.94 b | 22.23 b |
WD1 | 185.8 | 152.48 | 343.28 | 8239.56 a | 54.04 a | 24.01 a |
WD2 | 185.8 | 147.25 | 353.05 | 7219.67 b | 49.03 c | 20.45 d |
WD3 | 185.8 | 135.12 | 335.92 | 6894.60 d | 51.03 b | 20.52 d |
WD4 | 185.8 | 150.25 | 340.85 | 8215.52 a | 54.67 a | 24.11 a |
WD5 | 185.8 | 145.26 | 346.06 | 7164.91 bc | 49.32 c | 20.70 cd |
WD6 | 185.8 | 142.58 | 338.38 | 7083.69 c | 49.68 c | 20.93 c |
WD7 | 185.8 | 137.76 | 338.56 | 6965.85 d | 50.57 b | 20.57 d |
WD8 | 185.8 | 115.23 | 316.03 | 5311.57 e | 46.10 d | 16.81 e |
WD9 | 185.8 | 112.47 | 315.27 | 5228.54 e | 46.48 d | 16.58 e |
[1] | 柏军华, 王克如, 初振东, 陈兵, 李少昆 (2005). 叶面积测定方法的比较研究. 石河子大学学报(自然科学版) 23, 216-218. |
[2] | 白向历, 孙世贤, 杨国航, 刘明, 张振平, 齐华 (2009). 不同生育时期水分胁迫对玉米产量及生长发育的影响. 玉米科学 17(2), 60-63. |
[3] | 白钰, 唐晓清, 施晟璐, 王雨, 杨月, 王永中, 王康才 (2016). 氮营养对菘蓝生长及活性成分积累的影响. 核农学报 31, 169-178. |
[4] | 方栋平, 张富仓, 李静, 王海东, 向友珍, 张燕 (2015). 灌水量和滴灌施肥方式对温室黄瓜产量和品质的影响. 应用生态学报 26, 1735-1742. |
[5] | 国欣, 胡小龙, 王月荣, 杨子峰, 王玉涛, 李征途, 胡坪 (2016). 板蓝根多糖的系统分离纯化与组成分析. 中草药 47, 1508-1514. |
[6] | 寇丹, 苏德荣, 吴迪, 李岩 (2014). 地下调亏滴灌对紫花苜蓿耗水、产量和品质的影响. 农业工程学报 30(2), 116-123. |
[7] | 刘梅先, 杨劲松, 李晓明, 余美, 王进 (2011). 膜下滴灌条件下滴水量和滴水频率对棉田土壤水分分布及水分利用效率的影响. 应用生态学报 22, 3203-3210. |
[8] | 刘盛, 陈万生, 乔传卓, 郑水庆, 曾明, 张汉明, 宋赵军 (2000). 不同种质板蓝根和大青叶的抗甲型流感病毒作用. 第二军医大学学报 21, 204-206. |
[9] | 刘素华, 彭延, 彭小峰, 罗振, 董合忠 (2016). 调亏灌溉与合理密植对旱区棉花生长发育及产量与品质的影响. 棉花学报 28, 184-188. |
[10] | 刘洋, 栗岩峰, 李久生, 严海军 (2015). 东北半湿润区膜下滴灌对农田水热和玉米产量的影响. 农业机械学报 46(10), 93-104, 135. |
[11] | 罗春红, 王康才, 李同根, 刘倩倩, 邹立思 (2012). 菘蓝不同栽培类型植物性状与质量评价研究. 中国中药杂志 37, 2373-2377. |
[12] | 宁松瑞, 左强, 石建初, 王数, 刘忠山 (2013). 新疆典型膜下滴灌棉花种植模式的用水效率与效益. 农业工程学报 29(22), 90-99. |
[13] | 谭勇, 梁宗锁, 董娟娥, 郝海员, 叶青 (2008). 水分胁迫对菘蓝生长发育和有效成分积累的影响. 中国中药杂志 33, 19-22. |
[14] | 王磊, 张彤, 丁圣彦 (2009). 开花期土壤短期干旱和复水对大豆光合作用和产量的影响. 植物学报 44, 185-190. |
[15] | 吴敏, 张文辉, 周建云, 马闯, 韩文娟 (2014). 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响. 生态学报 34, 4223-4233. |
[16] | 邢英英, 张富仓, 张燕, 李静, 强生才, 李志军, 高明霞 (2014). 膜下滴灌水肥耦合促进番茄养分吸收及生长. 农业工程学报 30(21), 70-80. |
[17] | 邢英英, 张富仓, 张燕, 李静, 强生才, 吴立峰 (2015). 滴灌施肥水肥耦合对温室番茄产量、品质和水氮利用的影响. 中国农业科学 48, 713-726. |
[18] | 张恒嘉, 李晶 (2013). 绿洲膜下滴灌调亏马铃薯光合生理特性与水分利用. 农业机械学报 44(10), 143-151. |
[19] | 郑建华, 黄冠华, 黄权中, 王军, 贾冬冬, 张柯桢 (2011). 干旱区膜下滴灌条件下洋葱水分生产函数与优化灌溉制度. 农业工程学报 27(8), 25-30. |
[20] | 朱成刚, 陈亚宁, 李卫红, 付爱红, 杨玉海 (2011). 干旱胁迫对胡杨PSII光化学效率和激能耗散的影响. 植物学报 46, 413-424. |
[21] | Kang SZ, Shi WJ, Zhang JH (2000). An improved water-use efficiency for maize grown under regulated deficit irrigation.Field Crops Res 67, 207-214. |
[22] | Savić S, Stikić R, Radović BV, Bogičević B, Jovanović Z, Šukalović VHT (2008). Comparative effects of regulated deficit irrigation (RDI) and partial root-zone drying (PRD) on growth and cell wall peroxidase activity in tomato fruits.Sci Hortic 117, 15-20. |
[1] | Chaoyu Zhu, Chengxiang Hu, Zhenan Zhu, Zhining Zhang, Lihai Wang, Jun Chen, Sanfeng Li, Jinjin Lian, Luyao Tang, Qianqian Zhong, Wenjing Yin, Yuexing Wang, Yuchun Rao. Mapping of QTLs Associated with Rice Panicle Traits and Candidate Gene Analysis [J]. Chinese Bulletin of Botany, 2024, 59(2): 217-230. |
[2] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[3] | LIU Jian-Xin, LIU Rui-Rui, LIU Xiu-Li, JIA Hai-Yan, BU Ting, LI Na. Regulation of exogenous hydrogen sulfide on photosynthetic carbon metabolism in Avena nude under saline-alkaline stress [J]. Chin J Plant Ecol, 2023, 47(3): 374-388. |
[4] | Yuping Yan, Xiaoqi Yu, Deyong Ren, Qian Qian. Genetic Mechanisms and Breeding Utilization of Grain Number Per Panicle in Rice [J]. Chinese Bulletin of Botany, 2023, 58(3): 359-372. |
[5] | Weijun Ye, Yin Zhang, Peiran Wang, Lingling Zhang, Dongfeng Tian, Zejiang Wu, Bin Zhou. QTLs Analysis for Five Yield-related Traits in Mungbean [J]. Chinese Bulletin of Botany, 2023, 58(1): 150-158. |
[6] | YU Shui-Jin, WANG Juan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Impact and mechanism of maintaining biomass stability in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 632-641. |
[7] | Wang Lei, Chong Kang. Choice of both Ways: Variations of Reverted Repeats Balance Environmental Adaptation and Yield in Maize [J]. Chinese Bulletin of Botany, 2022, 57(5): 555-558. |
[8] | Liu Xiaolong, Ji Ping, Yang Hongtao, Ding Yongdian, Fu Jialing, Liang Jiangxia, Yu Congcong. Priming Effect of Abscisic Acid on High Temperature Stress During Rice Heading-flowering Stage [J]. Chinese Bulletin of Botany, 2022, 57(5): 596-610. |
[9] | XIONG Shu-Ping, CAO Wen-Bo, CAO Rui, ZHANG Zhi-Yong, FU Xin-Lu, XU Sai-Jun, PAN Hu-Qiang, WANG Xiao-Chun, MA Xin-Ming. Effects of horizontal structure on canopy vertical structure, microenvironment and yield of Triticum aestivum [J]. Chin J Plant Ecol, 2022, 46(2): 188-196. |
[10] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[11] | LIN Yong, CHEN Zhi, YANG Meng, CHEN Shi-Ping, GAO Yan-Hong, LIU Ran, HAO Yan-Bin, XIN Xiao-Ping, ZHOU Li, YU Gui-Rui. Temporal and spatial variations of ecosystem photosynthetic parameters in arid and semi-arid areas of China and its influencing factors [J]. Chin J Plant Ecol, 2022, 46(12): 1461-1472. |
[12] | Yanpeng Li, Yunlong Ni, Han Xu, Juyu Lian, Wanhui Ye. Relationship between variation of plant functional traits and individual growth at different vertical layers in a subtropical evergreen broad-leaved forest of Dinghushan [J]. Biodiv Sci, 2021, 29(9): 1186-1197. |
[13] | Jian-Min Zhou. A Ca2+-ROS Signaling Axis in Rice Provides Clues to Rice-pathogen Coevolution and Crop Improvements [J]. Chinese Bulletin of Botany, 2021, 56(5): 513-515. |
[14] | HAN Lu, YANG Fei, WU Ying-Ming, NIU Yun-Ming, ZENG Yi-Ming, CHEN Li-Xin. Responses of short-term water use efficiency to environmental factors in typical trees and shrubs of the loess area in West Shanxi, China [J]. Chin J Plant Ecol, 2021, 45(12): 1350-1364. |
[15] | LI Zhou-Yuan, YE Xiao-Zhou, WANG Shao-Peng. Ecosystem stability and its relationship with biodiversity [J]. Chin J Plant Ecol, 2021, 45(10): 1127-1139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||