Chinese Bulletin of Botany ›› 2024, Vol. 59 ›› Issue (5): 726-737.DOI: 10.11983/CBB24010 cstr: 32102.14.CBB24010
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Tingxin Chen1, Min Fu3, Na Li2, Leilei Yang2, Lingfei Li2,*(), Chunmei Zhong1,*(
)
Received:
2024-01-22
Accepted:
2024-05-07
Online:
2024-09-10
Published:
2024-08-19
Contact:
Lingfei Li, Chunmei Zhong
Tingxin Chen, Min Fu, Na Li, Leilei Yang, Lingfei Li, Chunmei Zhong. Identification and Expression Analysis of DNA Methyltransferase in Begonia masoniana [J]. Chinese Bulletin of Botany, 2024, 59(5): 726-737.
Gene name | Gene ID | Primer sequence (5′-3′) | |
---|---|---|---|
BmaCMT2-5 | Bma021768.1 | F: CTGCTGGCTGCTATGGTCTT | R: ACATCATGTGTGGGTAGCGG |
BmaCMT3-11 | Bma005730.1 | F: CCAACAGTAGTTACACGCGCGG | R: CCGGAAAACCTTGCAGTCTCGC |
BmaCMT3-14 | Bma011172.1 | F: TGCCGAGCAAACGTCAAGCG | R: ACTTCAGGCGCCGAAGAAGC |
BmaMET1-15 | Bma013045.1 | F: CGGCTAACGCTTGCATCGCT | R: AGGAGCAGCCGCCCATATGA |
BmaDRM2-2 | Bma014831.1 | F: CTGCCGCAAGAAAGAGAGGT | R: GAAGGCCACCACTTCCTTGT |
Table 1 DNA methyltransferase qRT-PCR primers for Begonia masoniana
Gene name | Gene ID | Primer sequence (5′-3′) | |
---|---|---|---|
BmaCMT2-5 | Bma021768.1 | F: CTGCTGGCTGCTATGGTCTT | R: ACATCATGTGTGGGTAGCGG |
BmaCMT3-11 | Bma005730.1 | F: CCAACAGTAGTTACACGCGCGG | R: CCGGAAAACCTTGCAGTCTCGC |
BmaCMT3-14 | Bma011172.1 | F: TGCCGAGCAAACGTCAAGCG | R: ACTTCAGGCGCCGAAGAAGC |
BmaMET1-15 | Bma013045.1 | F: CGGCTAACGCTTGCATCGCT | R: AGGAGCAGCCGCCCATATGA |
BmaDRM2-2 | Bma014831.1 | F: CTGCCGCAAGAAAGAGAGGT | R: GAAGGCCACCACTTCCTTGT |
Figure 1 DNA methyltransferase phylogenetic tree (A) and protein domain map (B) of Arabidopsis thaliana (At), Brassica napus (Bna), Oryza sativa (Os) and Begonia masoniana (Bma) Using the Neighbor-joining method in MEGA 7 software. The value of bootstrap is 1 000. Numbers indicate bootstrap values. CMT: Chromomethylases; MET: Methyltransferase; DNMT: de novo DNA methyltransferase; DRM: Domains rearranged methylase; aa: Amino acid
Gene name | CDS (bp) | Protein | Chr. | N-glycosyl-sites | Subcellular localization | ||
---|---|---|---|---|---|---|---|
Amino acid (aa) | pI | Molecular weight (Da) | |||||
BmaCMT2-5 | 2547 | 848 | 6.3013 | 97206.68 | Chr.5 | 4 | Nucleus |
BmaCMT3-11 | 2892 | 963 | 6.0700 | 109079.09 | Chr.11 | 4 | Nucleus |
BmaCMT3-14 | 2511 | 836 | 4.7815 | 94618.65 | Chr.14 | 4 | Nucleus |
BmaMET1-15 | 3645 | 1214 | 6.3066 | 136797.74 | Chr.15 | 6 | Nucleus |
BmaDRM2-2 | 1773 | 590 | 4.8922 | 66506.45 | Chr.2 | 2 | Nucleus |
Table 2 Analysis on the physical and chemical properties of DNA methyltransferase in Begonia masoniana
Gene name | CDS (bp) | Protein | Chr. | N-glycosyl-sites | Subcellular localization | ||
---|---|---|---|---|---|---|---|
Amino acid (aa) | pI | Molecular weight (Da) | |||||
BmaCMT2-5 | 2547 | 848 | 6.3013 | 97206.68 | Chr.5 | 4 | Nucleus |
BmaCMT3-11 | 2892 | 963 | 6.0700 | 109079.09 | Chr.11 | 4 | Nucleus |
BmaCMT3-14 | 2511 | 836 | 4.7815 | 94618.65 | Chr.14 | 4 | Nucleus |
BmaMET1-15 | 3645 | 1214 | 6.3066 | 136797.74 | Chr.15 | 6 | Nucleus |
BmaDRM2-2 | 1773 | 590 | 4.8922 | 66506.45 | Chr.2 | 2 | Nucleus |
Figure 2 Gene structure of DNA methyltransferase (A) and distribution map of conserved motif (B) of Begonia masoniana CDS is the same as shown in Table 2.
Figure 4 Relative expression levels of DNA methyltransferase genes in different tissues and organs of Begonia masoniana ACT7 was the internal reference gene and the relative gene expression was means±SD. The minimum expression of DNA methyltransferase in different tissues is regarded as “1”. Different lowercase letters indicate significant differences among different treatments (P<0.05).
Figure 5 Relative expression levels of DNA methyltransferase genes in Begonia masoniana treated with GA, ABA, SA, MeJA and NAA (6 h) The relative expression of control is regarded as “1”. GA: Gibberellin; ABA: Abscisic acid; SA: Salicylic acid; MeJA: Methyl jasmonate; NAA: 1-naphthalene acetic acid. * indicate that the difference between treatment group and control group is significant (P<0.05); ** indicate that the difference between treatment group and control group is extremely significant (P<0.01).
[1] | 崔卫华, 管开云 (2013). 中国秋海棠属植物叶片斑纹多样性研究. 植物分类与资源学报 35, 119-127. |
[2] | 戴若惠, 钱心妤, 孙静蕾, 芦涛, 贾绮玮, 陆天麒, 路梅, 饶玉春 (2023). 水稻叶色调控机制及相关基因研究进展. 植物学报 58, 799-812. |
[3] | 杜文文, 段青, 马璐琳, 瞿素萍, 贾文杰, 王祥宁, 崔光芬 (2018). 7种秋海棠叶片斑纹结构及遗传特性分析. 西北植物学报 38, 2045-2052. |
[4] | 关峰, 韦正乙, 王云鹏, 林春晶, 邢少辰, 马景勇 (2011). 内含子数量改变GUS基因的瞬时表达调控. 基因组学与应用生物学 30, 571-576. |
[5] | 黎家, 李传友 (2019). 新中国成立70年来植物激素研究进展. 中国科学: 生命科学 49, 1227-1281. |
[6] | 李景秀, 管开云, 孔繁才, 李爱荣 (2021). 中国秋海棠属植物资源概述. 中国野生植物资源 40(12), 35-44. |
[7] | 李立奇, 万瑛 (2009). 蛋白质的亚细胞定位预测研究进展. 免疫学杂志 25, 602-604. |
[8] | 冉浩然, 张毓, 陈简村, 于超, 张启翔, 罗乐 (2024). 观赏植物叶斑的研究进展. 植物遗传资源学报 25, 704-717. |
[9] | 夏晗, 刘美芹, 尹伟伦, 卢存福, 夏新莉 (2008). 植物DNA甲基化调控因子研究进展. 遗传 30, 426-432. |
[10] | 杨凯如, 贾绮玮, 金佳怡, 叶涵斐, 王盛, 陈芊羽, 管易安, 潘晨阳, 辛德东, 方媛, 王跃星, 饶玉春 (2022). 水稻黄绿叶调控基因YGL18的克隆与功能解析. 植物学报 57, 276- 287. |
[11] | 杨婷, 薛珍珍, 李娜, 郎校安, 李凌飞, 钟春梅 (2021). 铁十字秋海棠斑叶发育过程内参基因筛选及验证. 园艺学报 48, 2251-2261. |
[12] | 周陈平, 杨敏, 郭金菊, 邝瑞彬, 杨护, 黄炳雄, 魏岳荣 (2022). 番木瓜成熟过程中全基因组DNA甲基化和转录组变化分析. 园艺学报 49, 519-532. |
[13] | Ahmad F, Huang X, Lan HX, Huma T, Bao YM, Huang J, Zhang HS (2014). Comprehensive gene expression analysis of the DNA (cytosine-5) methyltransferase family in rice (Oryza sativa L.). Genet Mol Res 13, 5159-5172. |
[14] | Bennett M, Cleaves K, Hewezi T (2021). Expression patterns of DNA methylation and demethylation genes during plant development and in response to phytohormones. Int J Mol Sci 22, 9681. |
[15] | Cao DY, Ju Z, Gao C, Mei XH, Fu DQ, Zhu HL, Luo YB, Zhu BZ (2014). Genome-wide identification of cytosine-5 DNA methyltransferases and demethylases in Solanum lycopersicum. Gene 550, 230-237. |
[16] | Carey NS, Krogan NT (2017). The role of AUXIN RESPONSE FACTORs in the development and differential growth of inflorescence stems. Plant Signal Behav 12, e130-7492. |
[17] | Chiu LW, Li L (2012). Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta 236, 1153-1164. |
[18] | Fan SH, Liu HF, Liu J, Hua W, Xu SM, Li J (2020). Systematic analysis of the DNA methylase and demethylase gene families in rapeseed (Brassica napus L.) and their expression variations after salt and heat stresses. Int J Mol Sci 21, 953. |
[19] | Furner IJ, Matzke M (2011). Methylation and demethylation of the Arabidopsis genome. Curr Opin Plant Biol 14, 137-141. |
[20] | Gahlaut V, Samtani H, Khurana P (2020). Genome-wide identification and expression profiling of cytosine-5 DNA methyltransferases during drought and heat stress in wheat (Triticum aestivum). Genomics 112, 4796-4807. |
[21] | Gianoglio S, Moglia A, Acquadro A, Comino C, Portis E (2017). The genome-wide identification and transcriptional levels of DNA methyltransferases and demethylases in globe artichoke. PLoS One 12, e0181669. |
[22] | Gu TT, Ren S, Wang YH, Han YH, Li Y (2016). Characterization of DNA methyltransferase and demethylase genes in Fragaria vesca. Mol Genet Genomics 291, 1333- 1345. |
[23] | Hong X, Scofield DG, Lynch M (2006). Intron size, abundance, and distribution within untranslated regions of genes. Mol Biol Evol 23, 2392-2404. |
[24] | Jiang S, Guo YC (2020). Epigenetic clock: DNA methylation in aging. Stem Cells Int 2020, 1047896. |
[25] | Li LF, Chen XL, Fang DM, Dong SS, Guo X, Li N, Campos-Dominguez L, Wang WG, Liu Y, Lang XA, Peng Y, Tian DK, Thomas DC, Mu WX, Liu M, Wu CY, Yang T, Zhang SZ, Yang LL, Yang JF, Liu ZJ, Zhang LS, Zhang XT, Chen F, Jiao YN, Guo YL, Hughes M, Wang W, Liu XF, Zhong CM, Li AR, Sahu SK, Yang HM, Wu E, Sharbrough J, Lisby M, Liu X, Xu X, Soltis DE, Van de Peer Y, Kidner C, Zhang SZ, Liu H (2022). Genomes shed light on the evolution of Begonia, a mega-diverse genus. New Phytol 234, 295-310. |
[26] | Ma J, Li Q, Zhang L, Cai S, Liu YY, Lin JC, Huang RF, Yu YQ, Wen MZ, Xu TD (2022). High auxin stimulates callus through SDG8-mediated histone H3K36 methylation in Arabidopsis. J Integr Plant Biol 64, 2425-2437. |
[27] | Parra G, Bradnam K, Rose AB, Korf I (2011). Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic Acids Res 39, 5328-5337. |
[28] | Parrilla-Doblas JT, Roldán-Arjona T, Ariza RR, Córdoba- Cañero D (2019). Active DNA demethylation in plants. Int J Mol Sci 20, 4683. |
[29] | Tian J, Li KT, Zhang S, Zhang J, Song TT, Zhu YJ, Yao YC (2017). The structure and methylation level of the McMYB10 promoter determine the leaf color of Malus crabapple. HortScience 52, 520-526. |
[30] | Wang QM, Wang L, Zhou YB, Cui JG, Wang YZ, Zhao CM (2016). Leaf patterning of Clivia miniata var. variegata is associated with differential DNA methylation. Plant Cell Rep 35, 167-184. |
[31] | Wang Y, Liu S, Tian X, Fu Y, Jiang X, Li Y, Wang G (2018). Influence of light intensity on chloroplast development and pigment accumulation in wild-type and etiolated mutant plants of Anthurium andraeanum ‘Sonate’. Plant Signal Behav 13, e1482174. |
[32] | Wu XX, Zhou Y, Yao D, Iqbal S, Gao ZH, Zhang Z (2020). DNA methylation of LDOX gene contributes to the floral colour variegation in peach. J Plant Physiol 246-247, 153116. |
[33] | Xiao K, Chen J, He QXM, Wang YX, Shen HL, Sun L (2020). DNA methylation is involved in the regulation of pepper fruit ripening and interacts with phytohormones. J Exp Bot 71, 1928-1942. |
[34] | Xu P, Su H, Jin R, Mao YX, Xu AN, Cheng HY, Wang YF, Meng Q (2020). Shading effects on leaf color conversion and biosynthesis of the major secondary metabolites in the albino tea cultivar ‘Yujinxiang’. J Agric Food Chem 68, 2528-2538. |
[35] | Yan M, Yan Y, Wang P, Wang YP, Piao XM, Di P, Yang DC (2023). Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in Panax ginseng indicates its possible roles in root development. Plants 12, 3943. |
[36] | Yao MQ, Chen WW, Kong JH, Zhang XL, Shi NN, Zhong SL, Ma P, Gallusci P, Jackson S, Liu YL, Hong YG (2020). METHYLTRANSFERASE1 and ripening modulate vivipary during tomato fruit development. Plant Physiol 183, 1883-1897. |
[37] | Yu H, Cui N, Guo K, Xu W, Wang HF (2023). Epigenetic changes in the regulation of carotenoid metabolism during honeysuckle flower development. Hortic Plant J 9, 577- 588. |
[38] | Yue PT, Lu Q, Liu Z, Lv TX, Li XY, Bu HD, Liu WT, Xu YX, Yuan H, Wang AD (2020). Auxin-activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening. New Phytol 226, 1781-1795. |
[39] | Zhang Y, Zhao GY, Li YS, Mo N, Zhang J, Liang Y (2017). Transcriptomic analysis implies that GA regulates sex expression via ethylene-dependent and ethylene-indepen- dent pathways in cucumber (Cucumis sativus L.). Front Plant Sci 8, 10. |
[40] | Zheng J, Wu H, Zhu HB, Huang CY, Liu C, Chang YS, Kong ZC, Zhou ZH, Wang GW, Lin YJ, Chen H (2019). Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves. New Phytol 223, 705-721. |
[1] | Qilu Yu, Jiangzhe Zhao, Xiaoxian Zhu, Kewei Zhang. Regulation of Rice Growth by Root-secreted Phytohormones [J]. Chinese Bulletin of Botany, 2021, 56(2): 175-182. |
[2] | Jiahui Xu, Yujia Dai, Xiaofeng Luo, Kai Shu, Weiming Tan. Thoughts and Applications of Chemical Biology in Phytohormonal Research [J]. Chinese Bulletin of Botany, 2020, 55(3): 369-381. |
[3] | Haiwei Shuai, Yongjie Meng, Feng Chen, Wenguan Zhou, Xiaofeng Luo, Wenyu Yang, Kai Shu. Phytohormone-mediated Plant Shade Responses [J]. Chinese Bulletin of Botany, 2018, 53(1): 139-148. |
[4] | Zheng Jun, Qiao Ling, Zhao Jiajia, Qiao Linyi, Zhang Shichang, Chang Jianzhong, Tang Caiguo, Yang Sanwei. Whole-genome Analysis of CCT Gene Family and Their Responses to Phytohormones in Aegilops tauschii [J]. Chinese Bulletin of Botany, 2017, 52(2): 188-201. |
[5] | Peng Cheng;Zhigang Huang;Yahui Hong;Xia Liu;Langtao Xiao;Ruozhong Wang*. Construction and Application of a Secondary Database for Phytohormone-related Nucleotides and Proteins [J]. Chinese Bulletin of Botany, 2010, 45(02): 258-264. |
[6] | Bing Wang;Jiayang Li;Yonghong Wang. Advances in Understanding the Roles of Auxin Involved in Modulating Plant Architecture [J]. Chinese Bulletin of Botany, 2006, 23(5): 443-458. |
[7] | ZHANG Ling. ECO-PHYSIOLOGICAL CHARACTERISTICS OF SEED GERMINATION OF LARIX CHINENSIS, A TIMBERLINE TREE [J]. Chin J Plant Ecol, 2004, 28(4): 579-583. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||