Chinese Bulletin of Botany ›› 2022, Vol. 57 ›› Issue (2): 209-216.DOI: 10.11983/CBB21122
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Hao Wang1, Ming Wang1, Ting Liang2, Yuxin Yao1, Yuanpeng Du1,*(), Zhen Gao1,*(
)
Received:
2021-07-25
Accepted:
2021-12-28
Online:
2022-03-01
Published:
2022-03-24
Contact:
Yuanpeng Du,Zhen Gao
Hao Wang, Ming Wang, Ting Liang, Yuxin Yao, Yuanpeng Du, Zhen Gao. Effects of High Air and Root Zone Temperature on Photosynthetic Fluorescence Characteristics of Grape Leaves[J]. Chinese Bulletin of Botany, 2022, 57(2): 209-216.
Figure 1 The influence of different air temperature/root zone temperature treatments on the Fv/Fm (A), Y(II) (B), Y(NPQ) (C) and Y(NO) (D) of Kyoho grape leaves Different lowercase letters indicate significant differences (P<0.05). Fv/Fm: PSII maximum photochemical efficiency; Y(II): PSII actual photochemical quantum yield; Y(NPQ): Regulated energy dissipation quantum yield; Y(NO): Non-regulated energy dissipation quantum yield; PAR: Photosynthetically active radiation; CK: Control; T1: High air temperature; T2: High root zone temperature; T3: Cross processing of high air temperature and high root zone temperature
Figure 2 The influence of different air temperature/root zone temperature treatments on the Y(CEF) (A) and 1-qP (B) of Kyoho grape leaves Different lowercase letters indicate significant differences (P<0.05). Y(CEF): Circular electron transfer effective quantum yield; 1-qP: QA redox state; PAR, CK and T1-T3 are shown in Figure 1.
Figure 3 Effect of different air temperature/root zone temperature treatments on the actual chlorophyll fluorescence induction curve (A) and the relative variable chlorophyll fluorescence induction curve (B) CK and T1-T3 are the same as shown in Figure 1.
Figure 4 Different lowercase letters indicate significant differences (P<0.05). RC/CSm: The number of active reaction centers per unit area; φEo: Quantum yield used for electron transfer; Wk: Relatively variable fluorescence of K point; Vj: Relatively variable fluorescence of J point; PIABS: The performance index; φDo: Quantum ratio used for heat dissipation; CK and T1-T3 are shown in Figure 1.
[1] | 陈景玲, 王静, 王谦, 吴明作, 袁远, 赵勇 (2014). 基于叶绿素荧光的荆条灌丛对栓皮栎幼苗庇荫效应研究. 西北林学院学报 29(4), 46-53. |
[2] | 高玉录, 仝亚军, 杨兴旺, 翟衡, 杜远鹏, 孙永江 (2020). 乙酸及ABA对田间高温胁迫下 ‘摩尔多瓦’ 葡萄叶片光抑制的影响. 中外葡萄与葡萄酒 (5), 1-5. |
[3] |
郭倩倩, 周文彬 (2019). 植物响应联合胁迫机制的研究进展. 植物学报 54, 662-672.
DOI |
[4] | 侯丽媛, 董艳辉, 李亚莉, 王育川, 赵佳, 刘江, 秦永军, 吴慎杰 (2021). 藜麦抗旱性研究进展与展望. 江苏农业科学 49(11), 22-28. |
[5] | 李鹏民, 高辉远, Strasser RJ (2005). 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报 31, 559-566. |
[6] | 罗海波, 马苓, 段伟, 李绍华, 王利军 (2010). 高温胁迫对 ‘赤霞珠’ 葡萄光合作用的影响. 中国农业科学 43, 2744-2750. |
[7] | 孙永江, 付艳东, 杜远鹏, 翟衡 (2013). 不同温度/光照组合对 ‘赤霞珠’ 葡萄叶片光系统II功能的影响. 中国农业科学 46, 1191-1200. |
[8] | 夏镇卿, 司雷勇, 金岩, 扶亚芳, 王奇, 路海东 (2020). 根区增温对玉米幼苗主要代谢物傅里叶红外光谱特性及叶绿素含量的影响. 光谱学与光谱分析 40, 1283-1288. |
[9] | 向芬, 周强, 田向荣, 陈功锡, 肖艳 (2014). 不同生境吉首蒲儿根叶片形态和叶绿素荧光特征的比较. 生态学报 34, 337-344. |
[10] | 许大全, 张玉忠, 张荣铣 (1992). 植物光合作用的光抑制. 植物生理学通讯 28, 237-243. |
[11] | 赵秀婷, 王延双, 段劼, 马履一, 何宝华, 贾忠奎, 桑子阳, 朱仲龙 (2021). 盐胁迫对红花玉兰嫁接苗生长和光合特性的影响. 林业科学 57, 43-53. |
[12] |
Al-Khatib K, Paulsen GM (1984). Mode of high temperature injury to wheat during grain development. Physiol Plant 61, 363-368.
DOI URL |
[13] |
Baker NR (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59, 89-113.
DOI PMID |
[14] |
Ding XT, Jiang YP, He LZ, Zhou Q, Yu JZ, Hui DF, Huang DF (2016). Exogenous glutathione improves high root- zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings. Sci Rep 6, 35424.
DOI URL |
[15] |
Foster WJ, Ingram DL, Nell TA (1991). Photosynthesis and root respiration in Ilex crenata ‘rotundifolia’ at supraoptimal root-zone temperatures. HortScience 26, 535-537.
DOI URL |
[16] |
Gur A, Hepner J, Shulman Y (1979). The influence of root temperature on apple trees. IV. The effect on the mineral nutrition of the tree. J Hortic Sci 54, 313-321.
DOI URL |
[17] |
Hao HP, Jiang CD, Zhang SR, Tang YD, Shi L (2012). Enhanced thermal-tolerance of photosystem II by elevating root zone temperature in Prunus mira Koehne seedlings. Plant Soil 353, 367-378.
DOI URL |
[18] |
Jiang CD, Jiang GM, Wang XZ, Li LH, Biswas DK, Li YG (2006). Increased photosynthetic activities and thermostability of photosystem II with leaf development of elm seedlings (Ulmus pumila) probed by the fast fluorescence rise OJIP. Environ Exp Bot 58, 261-268.
DOI URL |
[19] |
Kramer DM, Johnson G, Kiirats O, Edwards GE (2004). New fluorescence parameters for the determination of QAredox state and excitation energy fluxes. Photosynth Res 79, 209-218.
DOI URL |
[20] | Kyle DJ (1987). The biochemical basis for photoinhibition of photosystem II. In: Kyle DJ, Osmond CB, Arntzen CJ, eds. Photoinhibition. Amsterdam: Elsevier. pp. 197-226. |
[21] |
Liu XZ, Huang BR (2000). Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci 40, 503-510.
DOI URL |
[22] |
Mehta P, Allakhverdiev SI, Jajoo A (2010). Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res 105, 249-255.
DOI URL |
[23] |
Strasser BJ (1997). Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res 52, 147-155.
DOI URL |
[24] |
Takahashi S, Badger MR (2011). Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16, 53-60.
DOI PMID |
[25] |
van der Westhuizen MM, Oosterhuis DM, Berner JM, Boogaers N (2020). Chlorophyll a fluorescence as an indicator of heat stress in cotton (Gossypium hirsutum L.). S Afr J Plant Soil 37, 116-119.
DOI URL |
[26] |
Wu HY, Liu LA, Shi L, Zhang WF, Jiang CD (2021). Photosynthetic acclimation during low-light-induced leaf senescence in post-anthesis maize plants. Photosynth Res 150, 313-326.
DOI URL |
[27] |
Xia ZQ, Si LY, Jin Y, Fu YF, Wang Q, Lu HD (2021). Effects of root zone temperature increase on physiological indexes and photosynthesis of different genotype maize seedlings. Russ J Plant Physiol 68, 169-178.
DOI URL |
[28] |
Xu QZ, Huang BR (2000). Growth and physiological responses of creeping bentgrass to changes in air and soil temperatures. Crop Sci 40, 1363-1368.
DOI URL |
[29] |
Xu QZ, Huang BR, Wang ZL (2002). Photosynthetic responses of creeping bentgrass to reduced root-zone temperatures at supraoptimal air temperature. J Am Soc Hort Sci 127, 754-758.
DOI URL |
[30] |
Yamori W, Hikosaka K, Way DA (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119, 101-117.
DOI URL |
[1] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[2] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[3] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[4] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[5] | XUE Jin-Ru, LÜ Xiao-Liang. Assessment of vegetation productivity under the implementation of ecological programs in the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2022, 46(10): 1289-1304. |
[6] | ZHOU Wen, CHI Yong-Gang, ZHOU Lei. Vegetation phenology in the Northern Hemisphere based on the solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2021, 45(4): 345-354. |
[7] | DING Jian-Xi, ZHOU Lei, WANG Yong-Lin, ZHUANG Jie, CHEN Ji-Jing, ZHOU Wen, ZHAO Ning, SONG Jun, CHI Yong-Gang. Application prospects for combining active and passive observations of chlorophyll fluorescence [J]. Chin J Plant Ecol, 2021, 45(2): 105-118. |
[8] | Jianfu Liu, Yucai Chen, Wenjian Wang, Hechuan Wang, Jinfu Cai, Mingyuan Wang, Dandan Li, Bin Zhang, Kun Huang. Effects of Space Treatment on Biological and Growth Characteristics of Camellia sinensis [J]. Chinese Bulletin of Botany, 2020, 55(5): 564-572. |
[9] | GUO Qing-Hua, HU Tian-Yu, MA Qin, XU Ke-Xin, YANG Qiu-Li, SUN Qian-Hui, LI Yu-Mei, SU Yan-Jun. Advances for the new remote sensing technology in ecosystem ecology research [J]. Chin J Plant Ecol, 2020, 44(4): 418-435. |
[10] | LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207. |
[11] | Chen Keyi, Li Zhaona, Cheng Minmin, Zhao Yanghui, Zhou Mingbing, Yang Haiyun. Chloroplast Ultrastructure and Chlorophyll Fluorescence Characteristics of Three Cultivars of Pseudosasa japonica [J]. Chinese Bulletin of Botany, 2018, 53(4): 509-518. |
[12] | Jian-Guo CAI, Meng-Qi WEI, Yi ZHANG, Yun-Long WEI. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla [J]. Chin J Plan Ecolo, 2017, 41(5): 570-576. |
[13] | Da-Yong FAN, Zeng-Juan FU, Zong-Qiang XIE, Rong-Gui LI, Shu-Min ZHANG. A new technology of modulated Chl a fluorescence image: In vivo measurement of the PSII maximum photochemical efficiency and its heterogeneity within leaves [J]. Chin J Plant Ecol, 2016, 40(9): 942-951. |
[14] | Zhaoning Gong, Yunbao Fan, Hui Liu, Wenji Zhao. Chlorophyll Fluorescence Response Characteristics of Typical Emergent Plants Under Different Total Nitrogen Gradient [J]. Chinese Bulletin of Botany, 2016, 51(5): 631-638. |
[15] | LIU Chang,SUN Peng-Sen,LIU Shi-Rong. A review of plant spectral reflectance response to water physiological changes [J]. Chin J Plan Ecolo, 2016, 40(1): 80-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||