Chinese Bulletin of Botany ›› 2020, Vol. 55 ›› Issue (5): 564-572.DOI: 10.11983/CBB20035
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Jianfu Liu1,*(), Yucai Chen2, Wenjian Wang3, Hechuan Wang4, Jinfu Cai4, Mingyuan Wang1, Dandan Li1, Bin Zhang5, Kun Huang5
Received:
2020-03-05
Accepted:
2020-05-08
Online:
2020-09-01
Published:
2020-09-03
Contact:
Jianfu Liu
Jianfu Liu, Yucai Chen, Wenjian Wang, Hechuan Wang, Jinfu Cai, Mingyuan Wang, Dandan Li, Bin Zhang, Kun Huang. Effects of Space Treatment on Biological and Growth Characteristics of Camellia sinensis[J]. Chinese Bulletin of Botany, 2020, 55(5): 564-572.
Wuyi mingcong | Leaf length (cm) | Leaf width (cm) | Internode length (cm) | Leaf area (cm2) | ||||
---|---|---|---|---|---|---|---|---|
Control | Space treatment | Control | Space treatment | Control | Space treatment | Control | Space treatment | |
Rougui | 9.84±0.39 | 10.65±0.38* | 3.11±0.24 | 4.12±0.19* | 2.93±0.35 | 3.26±0.06* | 21.42±0.31 | 30.71±0.28* |
Jinmaohou | 10.91±0.17 | 8.83±0.13* | 3.57±0.19 | 3.81±0.03 | 3.12±0.38 | 3.38±0.11 | 24.26±0.18 | 23.55±0.08 |
Tieluohan | 10.20±0.49 | 9.12±1.72* | 4.50±0.51 | 3.54±0.43* | 2.99±0.40 | 3.13±0.12 | 32.13±0.50 | 22.60±0.57* |
Qidan | 8.50±0.45 | 8.63±0.40 | 3.29±0.25 | 3.95±0.13* | 3.16±0.53 | 3.38±0.34 | 19.58±0.35 | 23.86±0.26* |
Queshe | 7.35±0.44 | 9.61±0.69* | 3.05±0.20 | 3.73±0.45* | 3.03±0.24 | 3.43±0.09* | 15.69±0.23 | 25.09±0.57* |
Aijiaowulong | 7.01±0.79 | 8.73±1.80* | 3.17±0.26 | 2.91±0.03* | 3.08±0.23 | 3.57±0.25* | 15.56±0.53 | 17.78±0.42 |
Table 1 Changes of leaf morphology of Wuyimingcong after space treatment (means±SD)
Wuyi mingcong | Leaf length (cm) | Leaf width (cm) | Internode length (cm) | Leaf area (cm2) | ||||
---|---|---|---|---|---|---|---|---|
Control | Space treatment | Control | Space treatment | Control | Space treatment | Control | Space treatment | |
Rougui | 9.84±0.39 | 10.65±0.38* | 3.11±0.24 | 4.12±0.19* | 2.93±0.35 | 3.26±0.06* | 21.42±0.31 | 30.71±0.28* |
Jinmaohou | 10.91±0.17 | 8.83±0.13* | 3.57±0.19 | 3.81±0.03 | 3.12±0.38 | 3.38±0.11 | 24.26±0.18 | 23.55±0.08 |
Tieluohan | 10.20±0.49 | 9.12±1.72* | 4.50±0.51 | 3.54±0.43* | 2.99±0.40 | 3.13±0.12 | 32.13±0.50 | 22.60±0.57* |
Qidan | 8.50±0.45 | 8.63±0.40 | 3.29±0.25 | 3.95±0.13* | 3.16±0.53 | 3.38±0.34 | 19.58±0.35 | 23.86±0.26* |
Queshe | 7.35±0.44 | 9.61±0.69* | 3.05±0.20 | 3.73±0.45* | 3.03±0.24 | 3.43±0.09* | 15.69±0.23 | 25.09±0.57* |
Aijiaowulong | 7.01±0.79 | 8.73±1.80* | 3.17±0.26 | 2.91±0.03* | 3.08±0.23 | 3.57±0.25* | 15.56±0.53 | 17.78±0.42 |
Figure 1 Changes of leaf morphology of Wuyimingcong after space treatment (A) Rougui; (B) Jinmaohou; (C) Qidan; (D) Queshe; (E)Aijiaowulong; (F) Tieluohan. Bars=1 cm
Wuyimingcong | Chlorophyll a (mg·g-1) | Chlorophyll b (mg·g-1) | Total chlorophyll (mg·g-1) | Carotenoid (mg·g-1) | ||||
---|---|---|---|---|---|---|---|---|
Control | Space treatment | Control | Space treatment | Control | Space treatment | Control | Space treatment | |
Rougui | 1.98±0.26 | 2.65±0.43* | 0.66±0.12 | 0.98±0.15* | 2.64±0.90 | 3.63±0.67* | 0.55±0.02 | 0.71±0.05* |
Jinmaohou | 1.92±0.29 | 2.28±0.24* | 0.78±0.26 | 0.88±0.17 | 2.70±0.09 | 3.16±0.30* | 0.51±0.03 | 0.69±0.04* |
Tieluohan | 2.06±0.13 | 2.16±0.31 | 0.82±0.15 | 0.83±0.16 | 2.86±0.34 | 2.99±0.51 | 0.49±0.02 | 0.53±0.02 |
Qidan | 1.04±0.21 | 2.04±0.12* | 0.36±0.16 | 0.78±0.17* | 1.40±0.12 | 2.82±0.58* | 0.28±0.05 | 0.44±0.03* |
Queshe | 2.10±0.14 | 4.24±0.27* | 0.70±0.27 | 1.60±0.47* | 2.80±0.78 | 5.84±0.74* | 0.50±0.04 | 0.98±0.03* |
Aijiaowulong | 2.38±0.21 | 2.56±0.14 | 0.76±0.28 | 0.94±0.11 | 3.14±0.24 | 3.50±0.91 | 0.47±0.03 | 0.50±0.02 |
Table 2 Changes of photosynthetic pigment contents in Wuyimingcong after space treatment (means±SD)
Wuyimingcong | Chlorophyll a (mg·g-1) | Chlorophyll b (mg·g-1) | Total chlorophyll (mg·g-1) | Carotenoid (mg·g-1) | ||||
---|---|---|---|---|---|---|---|---|
Control | Space treatment | Control | Space treatment | Control | Space treatment | Control | Space treatment | |
Rougui | 1.98±0.26 | 2.65±0.43* | 0.66±0.12 | 0.98±0.15* | 2.64±0.90 | 3.63±0.67* | 0.55±0.02 | 0.71±0.05* |
Jinmaohou | 1.92±0.29 | 2.28±0.24* | 0.78±0.26 | 0.88±0.17 | 2.70±0.09 | 3.16±0.30* | 0.51±0.03 | 0.69±0.04* |
Tieluohan | 2.06±0.13 | 2.16±0.31 | 0.82±0.15 | 0.83±0.16 | 2.86±0.34 | 2.99±0.51 | 0.49±0.02 | 0.53±0.02 |
Qidan | 1.04±0.21 | 2.04±0.12* | 0.36±0.16 | 0.78±0.17* | 1.40±0.12 | 2.82±0.58* | 0.28±0.05 | 0.44±0.03* |
Queshe | 2.10±0.14 | 4.24±0.27* | 0.70±0.27 | 1.60±0.47* | 2.80±0.78 | 5.84±0.74* | 0.50±0.04 | 0.98±0.03* |
Aijiaowulong | 2.38±0.21 | 2.56±0.14 | 0.76±0.28 | 0.94±0.11 | 3.14±0.24 | 3.50±0.91 | 0.47±0.03 | 0.50±0.02 |
Figure 2 Changes of soluble sugar (A) and protein (B) contents in Wuyimingcong after space treatment * indicate significant differences (P<0.05); ** indicate extremely significant differences (P<0.01). AJWL: Aijiaowulong; QD: Qidan; JMH: Jinmaohou; QS: Queshe; RG: Rougui; TLH: Tieluohan
Figure 3 Changes of instantaneous chlorophyll fluorescence (Ft) (A) and quantum efficiency (Qy) (B) of Wuyimingcong after space treatment * indicate significant differences (P<0.05). AJWL, QD, JMH, QS, RG and TLH see Figure 2.
Figure 4 Changes of quality components contents in Wuyimingcong after space treatment (A) Amino acid; (B) Tea polyphenol; (C) Catechin; (D) Caffeine. * indicate significant differences (P<0.05); ** indicate extremely significant differences (P<0.01). AJWL, QD, JMH, QS, RG and TLH see Figure 2.
[1] | 陈刚, 李胜 (2016). 植物生理学实验. 北京: 高等教育出版社. pp. 96-129. |
[2] | 陈志强, 周丹华, 郭涛, 王慧 ( 2019). 水稻航天生物育种研究进展. 华南农业大学学报 40(5), 195-202. |
[3] | 郭长虹, 于瑛, 王德慧, 马军, 郭亚华, 耿月伟 ( 2010). 航天搭载对辣椒SP1代的诱变效应. 哈尔滨工业大学学报 42, 1842-1844. |
[4] | 郭亚华, 谢立波, 孟凡娟, 刘录祥, 王雪, 高永利, 周宇, 庞洪影 ( 2011). 空间诱变后甜椒叶片光合、色素和超微结构的变化. 核农学报 25, 237-241. |
[5] | 胡能兵, 隋益虎, 舒英杰, 何克勤, 储娜 ( 2018). 高温干旱胁迫对辣椒热害指标及叶绿素荧光参数Fv/Fm的影响. 基因组学与应用生物学报 37, 5421-5428. |
[6] | 姜静, 姜莹, 杨传平, 郭敏, 李开隆, 刘桂丰, 李慧玉 ( 2006). 白桦航天诱变育种研究初报. 核农学报 20, 27-31. |
[7] | 李辉, 张光灿, 谢会成, 许景伟, 李传荣, 孙居文 ( 2016). 苯酚废水对垂柳叶片光合生理参数的影响. 植物学报 51, 31-39. |
[8] | 李社荣, 马惠平, 谷宏志, 朱保葛, 刘根齐 ( 2001). 返回式卫星搭载后玉米叶绿体色素变化的研究. 核农学报 15, 75-80. |
[9] | 李晓锋, 朱红芳, 朱玉英, 侯瑞贤 ( 2018). 空间诱变创制不结球白菜晚抽薹新种质及新品种艳春的选育. 核农学报 32, 1249-1255. |
[10] | 李屹, 曲晓斌, 李莉 ( 2009). 太空诱变后循化线辣椒M1代生理指标的变化. 长江蔬菜 ( 24), 11-12. |
[11] | 林树祺, 杨跃华 ( 1989). γ辐射对茶树主要品质成分的影响. 中国茶叶 ( 6), 20-21. |
[12] | 刘建福, 黄安民, 钟书淳, 黄寿生, 张斌, 吴燕红 ( 2013). “神舟八号”航天搭载武夷岩茶品种形态变异研究. 福建茶叶 35(5), 8-10. |
[13] | 刘建福, 王文建, 黄昆 (2018). 中国乌龙茶种质资源图鉴. 厦门: 厦门大学出版社. pp. 13-18. |
[14] | 路超, 袁存权, 李云, 习洋 ( 2010). 3种木本植物种子航天诱变研究初报. 核农学报 24, 1152-1157. |
[15] | 罗蛟, 李玉婷, 张子山, 车兴凯, 梁英, 李月楠, 李滢, 赵世杰, 高辉远 ( 2020). 烟草叶片中呼吸电子传递途径在缓解叶绿体PSII光抑制中的作用. 植物学报 55, 31-37. |
[16] | 马宏秀, 王开勇, 张开祥, 孟春梅, 安梦洁 ( 2019). 棉粕对盐碱胁迫下棉花生理及生长补偿效应. 植物学报 54, 208-216. |
[17] | 毛仁俊, 齐志鸿, 马楠, 刘岩, 韩蕊莲 ( 2014). 航天搭载对决明SP1代相关生理及生长特性的影响. 西北农林科技大学学报(自然科学版) 42(12), 166-172. |
[18] | 彭曦, 叶庆生 ( 2017). 太空诱变对金钗石斛光合特性和生长的影响. 热带亚热带植物学报 25, 480-488. |
[19] | 蒲晓斌, 张锦芳, 李浩杰, 黄驰, 李治华, 张启行, 蒋梁材 ( 2006). 甘蓝型油菜太空诱变后代农艺性状调查及品质分析. 西南农业学报 19, 373-377. |
[20] | 沈进娟, 冉广葵, 张召荣, 刘义华, 赵守忠, 肖丽, 张勇 ( 2012). 航天诱变对芥菜生理生化特性的影响. 西南农业学报 25, 1242-1247. |
[21] | 宋兴舜, 吴迪, 刘雪梅, 李开隆, 宋福南, 杨传平 ( 2009). 大青杨航天诱变植株早期抗氧化酶生化指标测定. 林业科学 45, 145-149. |
[22] | 田锟, 冯长焕, 汤泽生, 杨军, 彭正松 ( 2011). 航天诱变对凤仙花SP3代叶绿素及可溶性糖含量的影响. 内江师范学院学报 26(10), 35-38. |
[23] | 王飞权, 李纪艳, 冯花, 罗盛财, 林美菁, 李少华, 张见明, 张渤, 陈荣冰 ( 2019). 武夷名丛茶树种质资源叶片解剖结构分析. 热带作物学报 40, 2375-2389. |
[24] | 王俊敏 ( 2012). 水稻空间诱变机理及其在新品种选育中的应用. 硕士论文. 杭州: 浙江大学. pp. 23-27. |
[25] | 吴敏, 张文辉, 周建云, 马闯, 韩文娟 ( 2014). 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响. 生态学报 34, 4223-4233. |
[26] | 徐晨, 刘晓龙, 李前, 凌凤楼, 武志海, 张治安 ( 2018). 供氮水平对盐胁迫下水稻叶片光合及叶绿素荧光特性的影响. 植物学报 53, 185-195. |
[27] | 薛淮, 刘敏, 张纯花, 潘毅 ( 2003). 空间搭载后的蜀葵幼苗叶中光合色素含量及抗氧化酶活性变化. 植物生理学通讯 39, 592-594. |
[28] | 严硕, 高文远, 路福平, 赵润怀 ( 2010). 药用植物空间育种研究进展. 中国中药杂志 35, 385-388. |
[29] | 杨军, 彭正松, 汤泽生, 谢晋鹤, 周红 ( 2005). 卫星搭载对抱子芥叶片叶绿素、可溶性糖含量的影响. 西华师范大学学报(自然科学版) 26, 354-357. |
[30] | 杨小青, 黄晓琴, 韩晓阳, 刘腾飞, 岳晓伟, 伊冉 ( 2020). 外源物质对茶树耐寒及蔗糖代谢关键基因表达的影响. 植物学报 55, 21-30. |
[31] | 袁存权, 李云, 路超, 杨敏生, 张玉瑶 ( 2010). 刺槐种子航天诱变生物学效应研究. 核农学报 24, 1141-1147. |
[32] | 张达, 王云秋, 郝再彬, 王豫颖 ( 2006). 浅谈我国航天育种研究. 东北农业大学学报 37, 416-422. |
[33] | 张福彦, 张建伟, 程仲杰, 陈晓杰, 齐红志, 杨保安, 范家霖, 崔龙 ( 2019). 航天诱变技术在小麦育种上的应用. 核农学报 33, 262-269. |
[34] | 张建芳 ( 2011). 空间环境对须苞石竹SP1诱变效应及突变体的生物学研究. 硕士论文. 雅安: 四川农业大学. pp. 33-37. |
[35] | 郑伟, 郭泰, 王志新, 李灿东, 张振宇, 郭美玲, 王庆胜, 张茂明, 刘忠堂 ( 2015). 大豆航天育种研究进展. 辐射研究与辐射工艺学报 33(5), 3-11. |
[36] | 周国莉, 徐贝, 刘应蛟, 喻亚飞, 刘塔斯, 舒柯 ( 2015). 航天搭载丹参SP1的叶绿素及可溶性糖的含量测定分析. 中南药学 13, 192-194. |
[37] | Gan YM, Wu YL, Zeng J, Cai WW, Cao ZY, Peng LS, Yang BP ( 2019). Effects of space radiation mutation on germination and growth of sugarcane hybrid seeds. Agric Biotechnol 8, 15-18. |
[38] |
Kostina L, Anikeeva I, Vaulina E ( 1984). The influence of space flight factors on viability and mutability of plants. Adv Space Res 4, 65-70.
DOI URL PMID |
[39] |
Li Y, Liu M, Cheng Z, Sun Y ( 2007). Space environment induced mutations prefer to occur at polymorphic sites of rice genomes. Adv Space Res 40, 523-527.
DOI URL |
[40] | Liu SJ, Zhao ZT, Yu XD, Li HC, Zhang YW ( 2012). Analysis on photosynthetic characteristics and carbon sequestration potential of Lespedeza bicolor of SP1 generation. Adv Mater Res 518-523, 4985-4993. |
[41] |
Ramezani M, Abdolmaleki MK, Shabani S, Dehestani A ( 2017). The role of potassium phosphite in chlorophyll fluorescence and photosynthetic parameters of downy mildew-challenged cucumber Cucumis sativus plants. Arch Phytopathol Plant Prot 50, 927-940.
DOI URL |
[42] |
Takahashi A, Ohnishi K, Fukui M, Nakano T, Nagaoka S, Ohnishi T ( 1999). The effect of microgravity on induced mutation through DNA synthesis during space flight. Biol Sci Space 13, 234-235.
URL PMID |
[43] | Zhao HB, Guo HJ, Zhao LS, Gu JY, Zhao SR, Li JH, Liu LX ( 2011). Agronomic traits and photosynthetic characteristics of chlorophyll-deficient wheat mutant induced by spaceflight environment. Acta Agron Sin 37, 119-126. |
[1] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[2] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[3] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[4] | Hao Wang, Ming Wang, Ting Liang, Yuxin Yao, Yuanpeng Du, Zhen Gao. Effects of High Air and Root Zone Temperature on Photosynthetic Fluorescence Characteristics of Grape Leaves [J]. Chinese Bulletin of Botany, 2022, 57(2): 209-216. |
[5] | XUE Jin-Ru, LÜ Xiao-Liang. Assessment of vegetation productivity under the implementation of ecological programs in the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2022, 46(10): 1289-1304. |
[6] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[7] | ZHOU Wen, CHI Yong-Gang, ZHOU Lei. Vegetation phenology in the Northern Hemisphere based on the solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2021, 45(4): 345-354. |
[8] | DING Jian-Xi, ZHOU Lei, WANG Yong-Lin, ZHUANG Jie, CHEN Ji-Jing, ZHOU Wen, ZHAO Ning, SONG Jun, CHI Yong-Gang. Application prospects for combining active and passive observations of chlorophyll fluorescence [J]. Chin J Plant Ecol, 2021, 45(2): 105-118. |
[9] | Zeyi Wang, Hengjia Zhang, Yucai Wang, Xietian Chen, Yuchun Ba. Effects of Deficit Irrigation on the Photosynthetic and Physiological Characteristics of Leaves and Yield of Isatis tinctoria [J]. Chinese Bulletin of Botany, 2020, 55(6): 705-714. |
[10] | GUO Qing-Hua, HU Tian-Yu, MA Qin, XU Ke-Xin, YANG Qiu-Li, SUN Qian-Hui, LI Yu-Mei, SU Yan-Jun. Advances for the new remote sensing technology in ecosystem ecology research [J]. Chin J Plant Ecol, 2020, 44(4): 418-435. |
[11] | Dongdong Cao,Shanyu Chen,Yebo Qin,Huaping Wu,Guanhai Ruan,Yutao Huang. Regulatory Mechanism of Salicylic Acid on Seed Germination Under Salt Stress in Kale [J]. Chinese Bulletin of Botany, 2020, 55(1): 49-61. |
[12] | Chun Zhou,Ran Jiao,Ping Hu,Han Lin,Juan Hu,Na Xu,Xianmei Wu,Yuchun Rao,Yuexing Wang. Gene Mapping and Candidate Gene Analysis of Rice Early Senescence Mutant LS-es1 [J]. Chinese Bulletin of Botany, 2019, 54(5): 606-619. |
[13] | LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207. |
[14] | Chen Keyi, Li Zhaona, Cheng Minmin, Zhao Yanghui, Zhou Mingbing, Yang Haiyun. Chloroplast Ultrastructure and Chlorophyll Fluorescence Characteristics of Three Cultivars of Pseudosasa japonica [J]. Chinese Bulletin of Botany, 2018, 53(4): 509-518. |
[15] | Jian-Guo CAI, Meng-Qi WEI, Yi ZHANG, Yun-Long WEI. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla [J]. Chin J Plan Ecolo, 2017, 41(5): 570-576. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||