Chinese Bulletin of Botany ›› 2025, Vol. 60 ›› Issue (5): 804-815.DOI: 10.11983/CBB25014 cstr: 32102.14.CBB25014
• RESEARCH ARTICLES • Previous Articles Next Articles
Jia Gaiya1,2, Zhang Na3, Li Hongwei2, Li Bin2, Li Zhensheng2, Kong Zhaosheng1, Zheng Qi2,*()
Received:
2025-01-24
Accepted:
2025-07-08
Online:
2025-09-10
Published:
2025-07-08
Contact:
*E-mail: qzheng@genetics.ac.cn
Jia Gaiya, Zhang Na, Li Hongwei, Li Bin, Li Zhensheng, Kong Zhaosheng, Zheng Qi. Genetic Analysis and Molecular Marker Development for the WTS135‒a Common Wheat-Thinopyrum ponticum Substitution Line with Leaf Rust Resistance[J]. Chinese Bulletin of Botany, 2025, 60(5): 804-815.
Figure 1 GISH, mc-FISH, and liquid chip analysis of WTS135 (A) GISH analysis using Thinopyrum ponticum gDNA as a probe and Chinese Spring gDNA as a block; (B) GISH analysis using Pseudoroegneria stipifolia gDNA as a probe and Th. elongatum gDNA as a block; (C) Mc-FISH analysis using combined oligo probes; (D) The liquid chip analysis of WTS135. The white arrows indicate exogenous chromosomes, purple frames indicate chromosome additions or deletions. Bars=20 μm.
Figure 2 Evaluation for leaf rust resistance in WTS135 and its parents, and agronomic traits of WTS135 and Jimai 22 (A) Evaluation for leaf rust resistance in WTS135 and its parents (1: WTS135; 2: Xiaoyan 81; 3: Jimai 22, 4: Zhongnong 28, 5: Thinopyrum ponticum); (B) Adult plants; (C) Front view of the main spike (WTS135 (right), Jimai 22 (left)); (D) Lateral view of the main spike (WTS135 (right), Jimai 22 (left)); (E) Matured seeds (WTS135 (right), Jimai 22 (left)).
Figure 3 Amplification results of 10 pairs of Thinopyrum ponticum-specific primers (A) and the results of molecular marker detection of Lr19 and Lr29 (B) M: Marker; 1: Thinopyrum ponticum; 2: Xiaoyan 81; 3: Jimai 22; 4: Zhongnong 28; 5: WTS135
Primer name | Primer sequence (5ʹ→3ʹ) | Fragment size (bp) | Annealing temperature (°C) |
---|---|---|---|
Thp32 | F: TTGCAGCAGATCGAATCAAG R: CCTTCTTTCCCCGTTACTGTT | 237 | 51 |
Thp39 | F: GCATCATCTGCATTGTCGTC R: TCTGCACATGATACCCCAGA | 290 | 52 |
Thp40 | F: GACCATGTAGGTGCAACGTG R: AATCACAAAGCCCCTCCTTT | 270 | 52 |
Thp94 | F: CCAAACCAACAAGCACATTG R: AGCACCTTTTGGATGACTGC | 285 | 51 |
Thp115 | F: ACAAGCAGACGACAATGCAA R: TGAGTATTTCGAGGGTTGTGG | 220 | 52 |
Thp124 | F: AGGCTGGATGACCGAGTATG R: GATCCAGTCGTGGAAGGTGT | 295 | 55 |
Thp242 | F: CTGCATGAGCAGAGTCTGGA R: GAACTCCATTCACAGCAGCA | 290 | 54 |
Thp251 | F: TTTTCTTTGCTGCCTTCGTT R: GCTTGTGGTGAAGCAAATCA | 260 | 51 |
Thp328 | F: ATTTTCGCCACTCGTCATTC R: CTCTTGAAGGGGTCCAGACA | 270 | 51 |
Thp374 | F: GCCCAGCAGACAGGTAAGTT R: CAGTGACGAACATCCCCTTT | 255 | 53 |
Table 1 Thinopyrum ponticum-specific primers in WTS135
Primer name | Primer sequence (5ʹ→3ʹ) | Fragment size (bp) | Annealing temperature (°C) |
---|---|---|---|
Thp32 | F: TTGCAGCAGATCGAATCAAG R: CCTTCTTTCCCCGTTACTGTT | 237 | 51 |
Thp39 | F: GCATCATCTGCATTGTCGTC R: TCTGCACATGATACCCCAGA | 290 | 52 |
Thp40 | F: GACCATGTAGGTGCAACGTG R: AATCACAAAGCCCCTCCTTT | 270 | 52 |
Thp94 | F: CCAAACCAACAAGCACATTG R: AGCACCTTTTGGATGACTGC | 285 | 51 |
Thp115 | F: ACAAGCAGACGACAATGCAA R: TGAGTATTTCGAGGGTTGTGG | 220 | 52 |
Thp124 | F: AGGCTGGATGACCGAGTATG R: GATCCAGTCGTGGAAGGTGT | 295 | 55 |
Thp242 | F: CTGCATGAGCAGAGTCTGGA R: GAACTCCATTCACAGCAGCA | 290 | 54 |
Thp251 | F: TTTTCTTTGCTGCCTTCGTT R: GCTTGTGGTGAAGCAAATCA | 260 | 51 |
Thp328 | F: ATTTTCGCCACTCGTCATTC R: CTCTTGAAGGGGTCCAGACA | 270 | 51 |
Thp374 | F: GCCCAGCAGACAGGTAAGTT R: CAGTGACGAACATCCCCTTT | 255 | 53 |
Traits | Jimai 22 | WTS135 |
---|---|---|
Plant height (cm) | 69.00±3.00 | 82.25±1.26** |
Effective tiller number | 13.33±1.53 | 23.75±1.71** |
Spike length (cm) | 8.80±0.56 | 8.83±0.57 |
Spikelet number per spike | 20.67±0.58 | 19.50±1.00 |
Kernel number per spikelet | 43.67±2.89 | 47.50±3.87 |
Total kernel number | 517.33±62.05 | 755.75±15.17** |
Yield per plant (g) | 21.56±2.66 | 22.73±0.50 |
Thousand-kernel weight (g) | 41.67±1.12** | 30.07±0.11 |
Table 2 Comparison of agronomic traits between WTS135 and Jimai 22
Traits | Jimai 22 | WTS135 |
---|---|---|
Plant height (cm) | 69.00±3.00 | 82.25±1.26** |
Effective tiller number | 13.33±1.53 | 23.75±1.71** |
Spike length (cm) | 8.80±0.56 | 8.83±0.57 |
Spikelet number per spike | 20.67±0.58 | 19.50±1.00 |
Kernel number per spikelet | 43.67±2.89 | 47.50±3.87 |
Total kernel number | 517.33±62.05 | 755.75±15.17** |
Yield per plant (g) | 21.56±2.66 | 22.73±0.50 |
Thousand-kernel weight (g) | 41.67±1.12** | 30.07±0.11 |
[1] | Deng PC, Du X, Wang YZ, Yang XY, Cheng XF, Huang CX, Li TT, Li TD, Chen CH, Zhao JX, Wang CY, Liu XL, Tian ZR, Ji WQ (2024). GenoBaits®WheatplusEE: a targeted capture sequencing panel for quick and accurate identification of wheat-Thinopyrum derivatives. Theor Appl Genet 137, 36. |
[2] | Duan ZY, Xu XY, Li X, Li ZF, Ma J, Yao ZJ (2021). Leaf rust resistance gene analysis of 12 wheat cultivars in main producing areas. Crops 37(5), 20-27. (in Chinese) |
段振盈, 徐新玉, 李星, 李在峰, 马骏, 姚占军 (2021). 12个主产区历史小麦品种抗叶锈病基因分析. 作物杂志 37(5), 20-27. | |
[3] |
Friebe B, Jiang J, Gill BS, Dyck PL (1993). Radiation- induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor Appl Genet 86, 141-149.
DOI PMID |
[4] | Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91, 59-87. |
[5] | Fu SL, Lv ZL, Qi B, Guo X, Li J, Liu B, Han FP (2012). Molecular cytogenetic characterization of wheat-Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium Head Blight. J Genet Genomics 39, 103-110. |
[6] | Gupta SK, Charpe A, Prabhu KV, Haque QMR (2006). Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor Appl Genet 113, 1027-1036. |
[7] |
Han FP, Lamb JC, Birchler JA (2006). High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103, 3238-3243.
DOI PMID |
[8] | He ZL, Zhang HK, Gao SH, Lercher MJ, Chen WH, Hu SN (2016). Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res 44, W236-W241. |
[9] | Huang XY, Zhu MQ, Zhuang LF, Zhang SY, Wang JJ, Chen XJ, Wang DR, Chen JY, Bao YG, Guo J, Zhang JL, Feng YG, Chu CG, Du P, Qi ZJ, Wang HG, Chen PD (2018). Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high- resolution multiplex oligonucleotide FISH. Theor Appl Genet 131, 1967-1986. |
[10] | Ibba MI, Gupta OP, Govindan V, Johnson AAT, Brinch- Pedersen H, Nikolic M, Taleon V (2022). Editorial: wheat biofortification to alleviate global malnutrition. Front Nutr 9, 1001443. |
[11] |
Jiang J, Friebe B, Gill BS (1994). Chromosome painting of Amigo wheat. Theor Appl Genet 89, 811-813.
DOI PMID |
[12] | Knott DR (1968). Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can J Genet Cytol 10, 695-696. |
[13] |
Leng YK, Sun K, Chen XY, Li WW (2015). Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chem Soc Rev 44, 5552-5595.
DOI PMID |
[14] | Li JB, Guan HX, Wang YQ, Dong CM, Trethowan R, McIntosh RA, Zhang P (2024). Cytological and molecular characterization of wheat lines carrying leaf rust and stem rust resistance genes Lr24 and Sr24. Sci Rep 14, 12816. |
[15] | Li MZ, Wang YZ, Liu XJ, Li XF, Wang HG, Bao YG (2021). Molecular cytogenetic identification of a novel wheat- Thinopyrum ponticum 1JS (1B) substitution line resistant to powdery mildew and leaf rust. Front Plant Sci 12, 727734. |
[16] | Li ZS, Li B, Tong YP (2008). The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J Genet Genomics 35, 451-456. |
[17] | Lin GF, Chen H, Tian B, Sehgal SK, Singh L, Xie JZ, Rawat N, Juliana P, Singh N, Shrestha S, Wilson DL, Shult H, Lee H, Schoen AW, Tiwari VK, Singh RP, Guttieri MJ, Trick HN, Poland J, Bowden RL, Bai GH, Gill B, Liu SZ (2022). Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii. Nat Commun 13, 3044. |
[18] | Ling HQ, Ma B, Shi XL, Liu H, Dong LL, Sun H, Cao YH, Gao Q, Zheng SS, Li Y, Yu Y, Du HL, Qi M, Li Y, Lu H, Yu HW, Cui Y, Wang N, Chen CL, Wu HL, Zhao Y, Zhang JC, Li YW, Zhou WJ, Zhang BR, Hu WJ, van Eijk MJT, Tang JF, Witsenboer HMA, Zhao SC, Li ZS, Zhang AM, Wang DW, Liang CZ (2018). Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557, 424-428. |
[19] | Mago R, Zhang P, Xia XD, Zhang JP, Hoxha S, Lagudah E, Graner A, Dundas I (2019). Transfer of stem rust resistance gene SrB from Thinopyrum ponticum into wheat and development of a closely linked PCR-based marker. Theor Appl Genet 132, 371-382. |
[20] | Mapuranga J, Chang JY, Zhao JJ, Liang ML, Li RL, Wu YH, Zhang N, Zhang LR, Yang WX (2023). The underexplored mechanisms of wheat resistance to leaf rust. Plants (Basel) 12, 3996. |
[21] |
Niu Z, Klindworth DL, Yu G, Friesen TL, Chao S, Jin Y, Cai X, Ohm JB, Rasmussen JB, Xu SS (2014). Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor Appl Genet 127, 969-980.
DOI PMID |
[22] | Peto FH (1936). Hybridization of Triticum and Agropyron. II. Cytology of the male parents and F1 generation. Can J Res 14c, 203-214. |
[23] | Pirseyedi SM, Somo M, Poudel RS, Cai XW, McCallum B, Saville B, Fetch T, Chao SAM, Marais F (2015). Characterization of recombinants of the Aegilops peregrina-derived Lr59 translocation of common wheat. Theor Appl Genet 128, 2403-2414. |
[24] | Prasad P, Savadi S, Bhardwaj SC, Gupta PK (2020). The progress of leaf rust research in wheat. Fungal Biol 124, 537-550. |
[25] | Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012). Achieving yield gains in wheat. Plant Cell Environ 35, 1799-1823. |
[26] | Roelfs AP, Singh RP, Saari EE (1992). Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico: CIMMYT. pp. 7-14. |
[27] |
Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81, 8014-8018.
DOI PMID |
[28] | Sears ER (1973). Agropyron -wheat transfers induced by homoeologous pairing. In:Proceedings of the Fourth International Wheat Genetics Symposium Alien Genetic Material. pp.191-199. |
[29] | Sears ER (1977). Analysis of wheat-Agropyron recombinant chromosomes. In:Proceedings of the 8th Eucarpia Congress. pp. 63-72. |
[30] | Sharma D, Knott DR (1966). The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8, 137-143. |
[31] | Singh A, Pallavi JK, Gupta P, Prabhu KV (2012). Identification of microsatellite markers linked to leaf rust resistance gene Lr25 in wheat. J Appl Genet 53, 19-25. |
[32] |
Singh RP, Singh PK, Rutkoski J, Hodson DP, He XY, Jørgensen LN, Hovmøller MS, Huerta-Espino J (2016). Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54, 303-322.
DOI PMID |
[33] | Smith EL, Schlehuber AM, Young HC Jr, Edwards LH (1968). Registration of agent wheat (reg. no. 471). Crop Sci 8, 511-512. |
[34] | Tar M, Purnhauser L, Csősz L, Mesterházy Á, Gyulai G (2002). Identification of molecular markers for an efficient leaf rust resistance gene (Lr29) in wheat. Acta Biol Szeged 46, 133-134. |
[35] | Tripathi AD, Mishra R, Maurya KK, Singh RB, Wilson DW (2019). Estimates for world population and global food availability for global health. In: Singh RB, Watson RR, Takahashi T, eds. The Role of Functional Food Security in Global Health. London: Academic Press. pp. 3-24. |
[36] | Tsitsin NV (1965). Remote hybridisation as a method of creating new species and varieties of plants. Euphytica 14, 326-330. |
[37] |
Wang K, Li MY, Hakonarson H (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, 164.
DOI PMID |
[38] | Wang SW, Wang CY, Feng XB, Zhao JX, Deng PC, Wang YJ, Zhang H, Liu XL, Li TD, Chen CH, Wang BT, Ji WQ (2022). Molecular cytogenetics and development of St-chromosome-specific molecular markers of novel stripe rust resistant wheat-Thinopyrum intermedium and wheat- Thinopyrum ponticum substitution lines. BMC Plant Biol 22, 111. |
[39] | Wang YZ, Cao Q, Zhang JJ, Wang SW, Chen CH, Wang CY, Zhang H, Wang YJ, Ji WQ (2020). Cytogenetic analysis and molecular marker development for a new wheat-Thinopyrum ponticum 1JS (1D) disomic substitution line with resistance to stripe rust and powdery mildew. Front Plant Sci 11, 1282. |
[40] | Xu SS, Lyu ZF, Zhang N, Li MZ, Wei XY, Gao YH, Cheng XX, Ge WY, Li XF, Bao YG, Yang ZJ, Ma X, Wang HW, Kong LR (2023). Genetic mapping of the wheat leaf rust resistance gene Lr19 and development of translocation lines to break its linkage with yellow pigment. Theor Appl Genet 136, 200. |
[41] | Yang GT, Deng PC, Ji WQ, Fu SL, Li HW, Li B, Li ZS, Zheng Q (2023a). Physical mapping of a new powdery mildew resistance locus from Thinopyrum ponticum chromosome 4AgS. Front Plant Sci 14, 1131205. |
[42] | Yang GT, Zhang N, Boshoff WHP, Li HW, Li B, Li ZS, Zheng Q (2023b). Identification and introgression of a novel leaf rust resistance gene from Thinopyrum intermedium chromosome 7JS into wheat. Theor Appl Genet 136, 231. |
[43] | Zhang JL, Jie YZ, Yan LJ, Wang MM, Dong YL, Pang YF, Ren CC, Song J, Chen XD, Li XJ, Zhang PP, Yang DY, Zhang Y, Qi ZJ, Ru ZG (2024). Development and identification of a novel wheat-Thinopyrum ponticum disomic substitution line DS5Ag(5D) with new genes conferring resistance to powdery mildew and leaf rust. BMC Plant Biol 24, 718. |
[44] |
Zhang L, Shi CC, Li LR, Li M, Meng QF, Yan HF, Liu DQ (2020). Race and virulence analysis of Puccinia triticina in China in 2014 and 2015. Plant Dis 104, 455-464.
DOI PMID |
[45] | Zhang WJ, Lukaszewski AJ, Kolmer J, Soria MA, Goyal S, Dubcovsky J (2005). Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19 (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor Appl Genet 111, 573-582. |
[46] |
Zhang XY, Dong YS, Wang RRC (1996). Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome 39, 1062-1071.
DOI PMID |
[47] | Zhao GY, Zou C, Li K, Wang K, Li TB, Gao LF, Zhang XX, Wang HJ, Yang ZJ, Liu X, Jiang WK, Mao L, Kong XY, Jiao YN, Jia JZ (2017). The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants 3, 946-955. |
[48] | Zhou JM (2020). Fighting Fusarium head blight in wheat—a remedy from afar. Chin Bull Bot 55, 123-125. (in Chinese) |
周俭民 (2020). 小麦抗赤霉病利器——他山之石. 植物学报 55, 123-125.
DOI |
|
[49] |
Zhu C, Wang YZ, Chen CH, Wang CY, Zhang AC, Peng NN, Wang YJ, Zhang H, Liu XL, Ji WQ (2017). Molecular cytogenetic identification of a wheat-Thinopyrum ponticum substitution line with stripe rust resistance. Genome 60, 860-867.
DOI PMID |
[1] | ZHU Xi, HE Zhi-Bin, DU Ming-Wu, ZHAO Li-Wen, WU Dan-Dan. Dataset of crop harvest traits and yields from long-term observation plots of oasis farmland ecosystems in the middle part of Hexi Corridor from 2004 to 2010 [J]. Chin J Plant Ecol, 2025, 49(8): 1312-1320. |
[2] | LI Shao-Wei, HE Yong-Tao, SUN Wei, DAI Er-Fu. Dataset of crop harvest traits and yield at long-term observation farmlands in Lhasa River Valley from 2016 to 2020 [J]. Chin J Plant Ecol, 2025, 49(8): 1321-1328. |
[3] | Xu Tingyang, Liu Yuchen, Wang Wanpeng, Su Hang, Su Kunlong, Wu Zhenying, Lϋ Ming, Li Fuli, Wang Xiaoshan, Fu Chunxiang. Effects of Different Plant Growth Regulators on Wheat Growth and Development in the Saline-alkali Land [J]. Chinese Bulletin of Botany, 2025, 60(3): 354-362. |
[4] | Zhigang Yang, Pengcheng Zhang, Haiwen Chang, Liru Kang, Yi Zuo, Haoxin Xiang, Fengying Han. Genetic Diversity Analysis of Pepper Germplasms Based on Morphological Traits and SSR Markers [J]. Chinese Bulletin of Botany, 2025, 60(2): 218-234. |
[5] | Xiao Liu, Wanying Du, Yunxiu Zhang, Chengming Tang, Huawei Li, Haiyong Xia, Shoujin Fan, Ling’an Kong. Nitrate-dependent Alleviation of Root Ammonium Toxicity in Wheat (Triticum aestivum) [J]. Chinese Bulletin of Botany, 2024, 59(3): 397-413. |
[6] | Bangbang Wu, Yuqiong Hao, Shubin Yang, Yuxi Huang, Panfeng Guan, Xingwei Zheng, Jiajia Zhao, Ling Qiao, Xiaohua Li, Weizhong Liu, Jun Zheng. Evaluation and Genetic Variation of Grain Lutein Contents in Common Wheat From Shanxi [J]. Chinese Bulletin of Botany, 2023, 58(4): 535-547. |
[7] | Ming-Yi Bai, Jinrong Peng, Xiangdong Fu. Coordinated Regulation of Gibberellin and Brassinosteroid Signalings Drives Toward a Sustainable “Green Revolution” by Breeding the New Generation of High-yield Wheat [J]. Chinese Bulletin of Botany, 2023, 58(2): 194-198. |
[8] | Wenqing Tan, Jun Chen, Hongwei Cai. Recent Progress in Biology of Genus Lolium [J]. Chinese Bulletin of Botany, 2022, 57(6): 802-813. |
[9] | Hongwei Li, Qi Zheng, Bin Li, Zhensheng Li. Research Progress on the Aspects of Molecular Breeding of Tall Wheatgrass [J]. Chinese Bulletin of Botany, 2022, 57(6): 792-801. |
[10] | Kong Lingrang. Breaking the Gene Code Conferring Broad-spectrum Resistance to Rust Fugi [J]. Chinese Bulletin of Botany, 2022, 57(4): 405-408. |
[11] | Jiahuan Sun, Dong Liu, Jiaqi Zhu, Shuning Zhang, Meixiang Gao. Spatial distribution pattern of soil mite community and body size in wheat- maize rotation farmland [J]. Biodiv Sci, 2022, 30(12): 22292-. |
[12] | Binbin Hu, Zhihui Xue, Cui Zhang. Protocols for Small RNA FISH in Plants [J]. Chinese Bulletin of Botany, 2021, 56(3): 330-338. |
[13] | Mingzhe Che, Yajun Wang, Chuangxin Ma, Xiaoquan Qi. Methods for Identification and Resistance Evaluation of Barley Slow Rusting to Leaf Rust [J]. Chinese Bulletin of Botany, 2020, 55(5): 573-576. |
[14] | Yuanyuan Li, Chaonan Liu, Rong Wang, Shuixing Luo, Shouqian Nong, Jingwen Wang, Xiaoyong Chen. Applications of molecular markers in conserving endangered species [J]. Biodiv Sci, 2020, 28(3): 367-375. |
[15] | Jian-Min Zhou. Fighting Fusarium Head Blight in Wheat—a Remedy from Afar [J]. Chinese Bulletin of Botany, 2020, 55(2): 123-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||