Chinese Bulletin of Botany ›› 2021, Vol. 56 ›› Issue (5): 573-583.DOI: 10.11983/CBB21096 cstr: 32102.14.CBB21096
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Ke Liu1, Bin Liu1, Lu Yuan1, Hui Shuai1, Yang Yang1, Tingjin Wang1, Deliang Chen2, Xiaorong Chen2, Kaibin Yang2, Xiaofeng Jin3, Liping Chen1,*()
Received:
2021-06-14
Accepted:
2021-09-30
Online:
2021-09-01
Published:
2021-10-12
Contact:
Liping Chen
Ke Liu, Bin Liu, Lu Yuan, Hui Shuai, Yang Yang, Tingjin Wang, Deliang Chen, Xiaorong Chen, Kaibin Yang, Xiaofeng Jin, Liping Chen. Seed Development and Embryo Culture of Endangered Abies beshanzuensis[J]. Chinese Bulletin of Botany, 2021, 56(5): 573-583.
Figure 2 Morphological changes of the micropylar funnel and pollen transfer during the pollination stage of Abies beshanzuensis (A) The integument develops a stigmatic micropylar funnel (arrow); (B) The pollen (arrow) attaches to the edge of micropylar funnel; (C) The integument folds inward and the micropylar funnel is closed (arrow); (D) The pollen (arrow) enters the pollen chamber. MF: Micropylar funnel; Po: Pollen; Poc: Pollen chamber. (A)-(C) Bars=100 μm; (D) Bar=500 μm
Figure 3 The endosperm rate and embryo rate of Abies beshanzuensis cones at different developmental stages in 2019 and 2020 (A) Changes of endosperm rate of A. beshanzuensis seeds with time; (B) Changes of embryo rate of A. beshanzuensis seeds with time. Different lowercase letters indicate significant differences at 0.05 level.
Figure 4 Changes in seed, embryo and endosperm weight of Abies beshanzuensis seeds at different developmental stages in 2019 and 2020 (A) Changes in the weight of seed with time in 2019 and 2020; (B) Changes in the weight of embryo and endosperm with time in 2019; (C) Changes in the weight of embryo and endosperm with time in 2020. Different lowercase letters indicate significant differences at 0.05 level.
Figure 5 Morphology of Abies beshanzuensis seed and its embryo and endosperm during development (A) The ovule on May 25th; (B) The embryo and endosperm of type I seeds on June 25th; (C) The endosperm of type II seeds on June 25th; (D) The paraffin section of the ovule on May 25th, the pollen (top) and archegonium (bottom) are in the red box; (E) The paraffin section of type I seeds on June 25th, the embryo in the red box; (F) The paraffin section of type II seeds on June 25th; (G) The embryo and endosperm of type I seeds on July 25th; (H) The endosperm of type II seeds on July 25th; (I) The shriveled tissue of endosperm or/and embryo within type III seeds on July 25th; (J) The paraffin section of type I seeds on July 25th, the embryo in the red box; (K) The paraffin section of type II seeds on July 25th; (L) The paraffin section of type III seeds on July 25th; (M) The embryo and endosperm of type I seeds on August 25th; (N) Type III seeds on August 25th; (O) The embryo and endosperm of type I seeds on September 25th. Bars=1 000 μm. MF: Micropylar funnel; In: Integument; Em: Embryo; Es: Endosperm; Po: Pollen; FG: Female gametophyte; Re: Resinocyst; Ext: Exotesta; Ent: Endotesta; Cy: Cotyledon; Hy: Hypocotyl; Su: Suspensor system; ST: Shriveled tissue; ER: Embryo root; CC: Corrosion cavity
Figure 6 Changes of primary metabolites in endosperm of Abies beshanzuensis in June and July (A) Differential metabolites of normal endosperm in June and July; (B) The proportion of key difference metabolites in the first, fourth, and fifth models in the same change pattern in all metabolites and the proportion of the same metabolites tested in all samples; (C) Relative content of melibiose, trehalose-6-phosphate and methylmaleic acid in endosperm of A. beshanzuensis seeds in June and July. 6_NE: Normal endosperm in June; 7_NE: Normal endosperm in July; 7_AE: Abnormal endosperm in July. Different lowercase letters indicate significant differences at 0.05 level. FC: Fold change; LPC: Lysophosphatidylcholine; LPE: Lysopnosphatidylethanolamine; PC: Phosphatidylcholine
Figure 7 Changes in germination rate of embryo of Abies beshanzuensis seeds at different developmental stages (A) Embryo germination (bar=200 μm); (B) Seedlings obtained by embryo culture (bar=2 cm); (C) Changes in germination rate of embryo of A. beshanzuensis seeds at different developmental stages. Different lowercase letters indicate significant differences at 0.05 level.
[1] | 樊金拴 (2007). 中国冷杉林. 北京: 中国林业出版社. pp. 104-107. |
[2] | 贺佳玉, 李云, 姜金仲, 曹春伟 (2008). 植物胚败育机理及其离体培养挽救技术之研究进展. 中国农学通报 24, 141-146. |
[3] | 姜在民, 贺学礼 (2009). 植物学. 杨凌: 西北农林科技大学出版社. pp. 297-301. |
[4] | 蒋志刚, 马克平 (2014). 保护生物学原理. 北京: 科学出版社. pp. 129-133. |
[5] | 李卫星, 崔慧, 何青松, 杨瞬博, 王莉 (2016). 裸子植物种子发育过程及基因调控研究进展. 种子 35(6), 50-56. |
[6] |
李晓笑, 陶翠, 王清春, 崔国发 (2012). 中国亚热带地区4种极危冷杉属植物的地理分布特征及其与气候的关系. 植物生态学报 36, 1154-1164.
DOI |
[7] | 林金星, 胡玉熹, 吴鸿 (2013). 裸子植物花粉生物学. 北京: 科学出版社. pp. 55-180. |
[8] | 刘向东, 李亚娟 (2012). 植物生殖生物学研究法. 广州: 华南理工大学出版社. pp. 37-45. |
[9] | 盛茂银, 沈初泽, 陈祥, 田兴军 (2011). 中国濒危野生植物的资源现状与保护对策. 自然杂志 33, 149-154. |
[10] | 王伏雄 (1990). 银杉生物学. 北京: 科学出版社. pp. 69-72. |
[11] | 吴友贵, 饶龙兵, 陈德良, 周荣飞, 叶珍林 (2010). 百山祖冷杉种子的人工育苗试验. 安徽农业科学 38, 12038-12039, 12098. |
[12] | 徐刚标, 刘雄盛, 梁文斌 (2015). 极度濒危植物水松大孢子发生、雌配子体发育及胚形成. 林业科学 51(6), 50-62. |
[13] |
张美善, 刘宝 (2012). 植物胚乳发育的表观遗传学调控. 植物学报 47, 101-110.
DOI |
[14] | 张松文 (2016). 富士响应外源GA3和“大小年结果信号”花芽孕育的生理分子机制. 硕士论文. 杨凌: 西北农林科技大学. pp. 1-5. |
[15] |
Chen W, Gong L, Guo ZL, Wang WS, Zhang HY, Liu XQ, Yu SB, Xiong LZ, Luo J (2013). A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant 6, 1769-1780.
DOI PMID |
[16] |
Eastmond PJ, van Dijken AJH, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JDG, Smeekens SC, Graham IA (2002). Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29, 225-235.
PMID |
[17] |
Fichtner F, Lunn JE (2021). The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Annu Rev Plant Biol 72, 737-760.
DOI URL |
[18] |
Haim D, Shalom L, Simhon Y, Shlizerman L, Kamara I, Morozov M, Albacete A, Rivero RM, Sadka A (2021). Alternate bearing in fruit trees: fruit presence induces polar auxin transport in citrus and olive stem and represses IAA release from the bud. J Exp Bot 72, 2450-2462.
DOI PMID |
[19] |
Iwaizumi MG, Takahashi M (2012). Effects of pollen supply and quality on seed formation and maturation in Pinus densiflora. J Plant Res 125, 517-525.
DOI URL |
[20] |
Kanehisa M, Goto S (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27-30.
PMID |
[21] |
Lauxmann MA, Annunziata MG, Brunoud G, Wahl V, Koczut A, Burgos A, Olas JJ, Maximova E, Abel C, Schlereth A, Soja AM, Bläsing OE, Lunn JE, Vernoux T, Stitt M (2016). Reproductive failure in Arabidopsis thaliana under transient carbohydrate limitation: flowers and very young siliques are jettisoned and the meristem is maintained to allow successful resumption of reproductive growth. Plant Cell Environ 39, 745-767.
DOI URL |
[22] |
Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010). The evolution of seeds. New Phytol 186, 817-831.
DOI PMID |
[23] | Meitzel T, Radchuk R, Mcadam EL, Thormählen I, Feil R, Munz E, Hilo A, Geigenberger P, Ross JJ, Lunn JE, Borisjuk L (2021). Trehalose 6-phosphate promotes seed filling by activating auxin biosynthesis. New Phytol 29, 1553-1565. |
[24] |
Owens JN, Morris SJ (1998). Factors affecting seed and cone development in Pacific silver fir ( Abies amabilis). Can J For Res 28, 1146-1163.
DOI URL |
[25] |
Owens JN, Takaso T, Runions CJ (1998). Pollination in conifers. Trends Plant Sci 3, 479-485.
DOI URL |
[26] |
Politi PI, Georghiou K, Arianoutsou M (2011). Reproductive biology of Abies cephalonica Loudon in Mount Aenos National Park, Cephalonia, Greece. Trees 25, 655-668.
DOI URL |
[27] |
Shen S, Zhang L, Liang XG, Zhao X, Lin S, Qu LH, Liu YP, Gao Z, Ruan YL, Zhou SL (2018). Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion. J Exp Bot 69, 1599-1613.
DOI PMID |
[28] |
Singh H, Owens JN (1982). Sexual reproduction in grand fir ( Abies grandis). Can J Bot 60, 2197-2214.
DOI URL |
[29] |
Wang SD, Yokosho K, Guo RZ, Whelan J, Ruan YL, Ma JF, Shou HX (2019). The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiol 180, 2133-2141.
DOI URL |
[30] |
Yuan L, Liu ZN, Song XY, Jernstedt J, Sundaresan V (2018). The gymnosperm ortholog of the angiosperm central cell-specification gene CKI1 provides an essential clue to endosperm origin. New Phytol 218, 1685-1696.
DOI PMID |
[1] | Zhou xin-yu, huiliang liu, GAO Bei, LU Yuting, TAO Lingqing, WEN Xiaohu, ZHANG Lan, ZHANG Yuan-Ming. Reproductive Biology of the Endangered and Endemic Species Nymphaea candida C. Presl in Xinjiang [J]. , 2025, 49(濒危植物的保护与恢复): 0-. |
[2] | SHANGGUAN Yao-Yao, SU Shi-Ping, GU Xue-Dan, ZHANG Zheng-Zhong, ZHAO Hu, LI Yi, WEI Xing-Yu. Response of Reaumuria songorica seedlings to photoperiod and light quality ratio [J]. Chin J Plant Ecol, 2025, 49(5): 788-800. |
[3] | LI Xin-Yi, ZHANG Li-Fang, WU You-Gui, GUO Jing, LAN Rong-Guang, LÜ Hong-Fei, YU Ming-Jian. Growth characteristics of Abies beshanzuensis seedlings at different altitudes and the influencing factors [J]. Chin J Plant Ecol, 2025, 49(4): 610-623. |
[4] | Zhao Ling, Guan Ju, Liang Wenhua, Zhang Yong, Lu Kai, Zhao Chunfang, Li Yusheng, Zhang Yadong. Mapping of QTLs for Heat Tolerance at the Seedling Stage in Rice Based on a High-density Bin Map [J]. Chinese Bulletin of Botany, 2025, 60(3): 342-353. |
[5] | Xiuping Xu, Xiaoyu Yang, Min Feng. A New Cereal Seed Treatment Method for Displaying Endosperm Cell Structures Under Micro CT Scanning [J]. Chinese Bulletin of Botany, 2025, 60(1): 81-89. |
[6] | MA Dong-Feng, JIA Cun-Zhi, WANG Xue-Peng, ZHAO Peng-Peng, HU Xiao-Wen. Effect of multi-species grouping on restoration of alpine degraded meadows in Gannan, China [J]. Chin J Plant Ecol, 2025, 49(1): 93-102. |
[7] | Jianhong Tian, Yan Liu, Mengqi Yin, Jing Wang, Ting Chen, Yan Wang, Xiaocheng Jiang. OsWAK16 Regulates Seed Anti-aging Ability by Modulating Antioxidant Enzyme Activity in Rice [J]. Chinese Bulletin of Botany, 2025, 60(1): 17-32. |
[8] | Wenjie Qu, Lei Wang, Wenyan Kang, Xinguo Yang, Jianjun Qu, Xue Zhang. Seed supply and regeneration potential of sand-fixing vegetation with different establishment years in the southeastern edge of the Tengger Desert [J]. Biodiv Sci, 2025, 33(1): 24254-. |
[9] | ZHANG Hui, ZHAO Yun-Peng, LIU Xiao-Chen, GUO Zeng-Peng, HU Guo-Rui, FENG Yan-Hao, MA Miao-Jun. Dynamics of soil seed bank and its role in plant community regeneration during alpine meadow degradation [J]. Chin J Plant Ecol, 2025, 49(1): 74-82. |
[10] | SUN Long, LI Wen-Bo, LOU Hu, YU Cheng, HAN Yu, HU Tong-Xin. Effects of fire disturbance on seed germination of Larix gmelinii [J]. Chin J Plant Ecol, 2024, 48(6): 770-779. |
[11] | Hongju Li, Weicai Yang. A Micropeptide With a Big Role: New Molecular Mechanism in Seed Desiccation [J]. Chinese Bulletin of Botany, 2024, 59(6): 869-872. |
[12] | YUAN Han, ZHONG Ai-Wen, LIU Song-Ping, PENG Yan-Song, XU Lei. Differences in the germination characteristics of Schoenoplectiella triangulata seeds and methods for breaking seed dormancy [J]. Chin J Plant Ecol, 2024, 48(5): 638-650. |
[13] | XU Zi-Yi, JIN Guang-Ze. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaf-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[14] | Yan Luo, Qiyuan Liu, Yuanbing Lü, Yue Wu, Yaoyu Tian, Tian An, Zhenhua Li. Photothermal Sensitivity of Phytochrome Mutants During Seed Germination in Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2024, 59(5): 752-762. |
[15] | Yuze Liu, Yifei Wang, Weizhen Ren, Hao Li, Bin Lu, Bingshe Lu, Xiaoyue Yu. Establishment of Immature Embryo Rescue and Regeneration System for Pyrus calleryana cv. ‘Cleveland’ [J]. Chinese Bulletin of Botany, 2024, 59(5): 800-809. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||