植物学报 ›› 2021, Vol. 56 ›› Issue (4): 422-432.DOI: 10.11983/CBB21031
孙廷哲1†, 岂泽华1†, 梁可欣1, 李沁1,2, 饶玉春2,*(), 穆丹1,*()
收稿日期:
2021-02-07
接受日期:
2021-04-19
出版日期:
2021-07-01
发布日期:
2021-06-30
通讯作者:
饶玉春,穆丹
作者简介:
mudansmile@126.com† 共同第一作者
基金资助:
Tingzhe Sun1†, Zehua Qi1†, Kexin Liang1, Qin Li1,2, Yuchun Rao2,*(), Dan Mu1,*()
Received:
2021-02-07
Accepted:
2021-04-19
Online:
2021-07-01
Published:
2021-06-30
Contact:
Yuchun Rao,Dan Mu
About author:
First author contact:† These authors contributed equally to this paper
摘要: 舒茶早(Camellia sinensis cv. ‘shuchazao’)是皖西南产区一种茶树品种。为研究茶蚜取食为害诱导的茶树挥发物释放特征, 运用气相色谱-质谱联用技术, 比较了健康茶梢和蚜害茶梢的挥发物组成和相对含量。结果显示, 健康茶梢挥发物种类(16种)和相对含量较少, 而蚜害茶梢挥发物种类(24种)较为丰富且相对含量增大。对具有显著性差异的挥发物种类进行无监督式聚类分析, 结果表明, 健康茶梢和蚜害茶梢挥发物具有明显的聚类特征。基于差异显著挥发物建立了偏最小二乘法判别分析(PLS-DA)模型。经实验验证, 此模型可较好地区分健康和蚜害茶梢(R2X=0.903, R2Y=0.875)。通过计算变量重要性投影, 结果表明, α-蒎烯、长叶烯-(V4)、苯甲醛、反-2-甲基-2-丁烯酸环丙烯酯、3-己烯醛、莰酮和癸醛这7种重要挥发物的相对含量整体变化对判别健康与蚜害茶梢具有重要作用。研究初步揭示了茶蚜为害茶树挥发物含量变化的特征, 可为制定茶蚜防控策略提供新的理论依据。
孙廷哲, 岂泽华, 梁可欣, 李沁, 饶玉春, 穆丹. 蚜害茶树挥发物组分变化的聚类分析. 植物学报, 2021, 56(4): 422-432.
Tingzhe Sun, Zehua Qi, Kexin Liang, Qin Li, Yuchun Rao, Dan Mu. Clustering Analysis of Volatile Components from the Tea Plants Infested by Tea Aphid (Toxoptera aurantii). Chinese Bulletin of Botany, 2021, 56(4): 422-432.
No. | Retention time (min) | Volatile organic compounds | Relative content | |
---|---|---|---|---|
Healthy | Infested | |||
C1 | 4.842 | 3-hexenal | 0 | 1.3204±0.3300** |
C2 | 6.984 | Ethylbenzene | 0.3174±0.0895 | 0.8110±0.2546 |
C3 | 7.391 | Benzene,1,3-dimethy- | 0.7028±0.0881 | 1.5338±0.5370 |
C4 | 8.261 | p-xylene | 0.1596±0.0382 | 0.5888±0.1525 |
C5 | 8.572 | 2-heptanone | 0 | 0.6570±0.2495** |
C6 | 10.057 | α-pinene | 0 | 0.3518±0.0670** |
C7 | 11.485 | Benaldehyde | 0 | 0.5694±0.1158** |
C8 | 13.402 | Decane | 0 | 0.1562±0.0716** |
C9 | 13.658 | Octanal | 0.0350±0.0080 | 0.3076±0.1001 |
C10 | 14.796 | 2-ethyl-1-hexanol | 0.4416±0.1631 | 1.1204±0.2834 |
C11 | 16.637 | Acetophenone | 0.0990±0.0240 | 0.4676±0.1435 |
C12 | 18.471 | Undecane | 0.0756±0.0166 | 0.1842±0.0535 |
C13 | 18.700 | Nonanal | 0.1240±0.0379 | 0.5608±0.2060* |
C14 | 19.071 | E-2-butenoic acid, 2-(methylencyclopropyl)prop-2-ylester | 0 | 0.0336±0.0123** |
C15 | 20.682 | Camphor | 0.1174±0.0318 | 0.5498±0.1094** |
C16 | 21.912 | E-2-nonen-1-ol | 0 | 0.1422±0.0804** |
C17 | 22.387 | Naphthalene | 0.0552±0.0174 | 0.2874±0.0868* |
C18 | 23.367 | Dodecane | 0.0334±0.0092 | 0.1366±0.0350* |
C19 | 23.666 | Decanal | 0.1188±0.0332 | 0.6450±0.3569* |
C20 | 28.033 | Tridecane | 0.0160±0.0036 | 0.0384±0.0142 |
C21 | 32.427 | Tetradecane | 0.0358±0.0094 | 0.1904±0.0688* |
C22 | 32.612 | Longifolene-(V4) | 0 | 0.0648±0.0141** |
C23 | 34.363 | E-5,9-undecadien-2-one,6,10-dimethyl- | 0.0470±0.0118 | 0.2866±0.1340* |
C24 | 40.538 | Hexadecane | 0.0408±0.0126 | 0.2320±0.1007* |
表1 健康和蚜害茶梢挥发物组分(VOCs)和相对含量(平均值±标准差)
Table 1 The relative content of volatile organic compounds (VOCs) from healthy and infested tea shoots by Toxoptera aurantii (means±SE)
No. | Retention time (min) | Volatile organic compounds | Relative content | |
---|---|---|---|---|
Healthy | Infested | |||
C1 | 4.842 | 3-hexenal | 0 | 1.3204±0.3300** |
C2 | 6.984 | Ethylbenzene | 0.3174±0.0895 | 0.8110±0.2546 |
C3 | 7.391 | Benzene,1,3-dimethy- | 0.7028±0.0881 | 1.5338±0.5370 |
C4 | 8.261 | p-xylene | 0.1596±0.0382 | 0.5888±0.1525 |
C5 | 8.572 | 2-heptanone | 0 | 0.6570±0.2495** |
C6 | 10.057 | α-pinene | 0 | 0.3518±0.0670** |
C7 | 11.485 | Benaldehyde | 0 | 0.5694±0.1158** |
C8 | 13.402 | Decane | 0 | 0.1562±0.0716** |
C9 | 13.658 | Octanal | 0.0350±0.0080 | 0.3076±0.1001 |
C10 | 14.796 | 2-ethyl-1-hexanol | 0.4416±0.1631 | 1.1204±0.2834 |
C11 | 16.637 | Acetophenone | 0.0990±0.0240 | 0.4676±0.1435 |
C12 | 18.471 | Undecane | 0.0756±0.0166 | 0.1842±0.0535 |
C13 | 18.700 | Nonanal | 0.1240±0.0379 | 0.5608±0.2060* |
C14 | 19.071 | E-2-butenoic acid, 2-(methylencyclopropyl)prop-2-ylester | 0 | 0.0336±0.0123** |
C15 | 20.682 | Camphor | 0.1174±0.0318 | 0.5498±0.1094** |
C16 | 21.912 | E-2-nonen-1-ol | 0 | 0.1422±0.0804** |
C17 | 22.387 | Naphthalene | 0.0552±0.0174 | 0.2874±0.0868* |
C18 | 23.367 | Dodecane | 0.0334±0.0092 | 0.1366±0.0350* |
C19 | 23.666 | Decanal | 0.1188±0.0332 | 0.6450±0.3569* |
C20 | 28.033 | Tridecane | 0.0160±0.0036 | 0.0384±0.0142 |
C21 | 32.427 | Tetradecane | 0.0358±0.0094 | 0.1904±0.0688* |
C22 | 32.612 | Longifolene-(V4) | 0 | 0.0648±0.0141** |
C23 | 34.363 | E-5,9-undecadien-2-one,6,10-dimethyl- | 0.0470±0.0118 | 0.2866±0.1340* |
C24 | 40.538 | Hexadecane | 0.0408±0.0126 | 0.2320±0.1007* |
图1 健康茶梢(A)和蚜害茶梢(B)挥发物组分的GC-MS总离子流 C1-C24同表1。IS: 内标。
Figure 1 The total ion chromatograms of the volatile organic compounds from healthy (A) and infested (B) tea shoots by Toxoptera aurantii C1-C24 are the same as Table 1. IS: Internal standard.
Volatile classification | Volatile compounds |
---|---|
GLVs | 3-hexenal and 2-ethyl-1-hexanol |
Aromatics | Ethylbenzene, benzene,1,3-dimethy-, p-xylene, benaldehyde, acetophenone and naphthalene |
Terpenes | α-pinene, E-5,9-undecadien-2-one,6,10-dimethyl-, E-2-butenoic acid, 2-(methylen-cyclopropyl)prop-2-ylester and longifolene-(V4) |
Alkanes | Decane, undecane, dodecane, tridecane, tetradecane and hexadecane |
Other | 2-heptanone, octanal, nonanal, camphor, E-2- nonen-1-ol and decanal |
表2 茶树挥发物分类
Table 2 Classification of volatile organic compounds from tea plants
Volatile classification | Volatile compounds |
---|---|
GLVs | 3-hexenal and 2-ethyl-1-hexanol |
Aromatics | Ethylbenzene, benzene,1,3-dimethy-, p-xylene, benaldehyde, acetophenone and naphthalene |
Terpenes | α-pinene, E-5,9-undecadien-2-one,6,10-dimethyl-, E-2-butenoic acid, 2-(methylen-cyclopropyl)prop-2-ylester and longifolene-(V4) |
Alkanes | Decane, undecane, dodecane, tridecane, tetradecane and hexadecane |
Other | 2-heptanone, octanal, nonanal, camphor, E-2- nonen-1-ol and decanal |
图2 健康茶梢和蚜害茶梢挥发物种类和比例 (A) 健康茶梢和蚜害茶梢5种挥发物的相对含量(**P<0.01); (B) 健康茶梢和蚜害茶梢5种挥发物占比。GLVs同表2。
Figure 2 The categories and proportions of volatile organic compounds in healthy and infested tea shoots (A) The relative contents of five kinds of volatiles in healthy and infested tea shoots (**P<0.01); (B) The proportion of five volatile compounds in healthy and infested tea shoots. GLVs is the same as given in Table 2.
图3 茶梢挥发物组成二维嵌入和聚类分析 (A) 5组健康茶梢(编号1-5)和5组蚜害茶梢(编号6-10)挥发物组成(VOCs)的t分布随机邻域嵌入(t-SNE); (B) 10组茶梢挥发物组分聚类分析
Figure 3 Two-dimensional embedding and clustering for volatiles from tea shoots (A) The t-distributed stochastic neighbor embedding (t-SNE) for volatile organic compounds (VOCs) from 5 healthy (No. 1-5) and 5 infested (No.6-10) groups; (B) Clustering analysis for VOCs from 10 groups above
图4 茶树挥发物组成(VOCs)主成分分析 (A) 5组健康茶梢(红色点, 因部分重叠故编号未予显示)和5组蚜害茶梢(编号6-10, 蓝色点)挥发物成分的主成分分析得分图; (B) 第1主成分(红色)和第2主成分(蓝色)载荷图(挥发物编号同表1)
Figure 4 Principal component analysis for volatile organic compounds (VOCs) of tea plants (A) The principal component scores for VOCs from 5 healthy (red points, owing to the partial overlap among points in healthy group, the number was not marked) and 5 infested (No.6-10, blue points) groups; (B) Loading plot for the first (red) and second (blue) principal components (the number of volatiles is the same as Table 1)
图5 茶树挥发物组分的偏最小二乘法判别分析 (A) 前2个隐变量(LVs)累计解释总变异百分比(红色为自变量, 蓝色为因变量); (B) 健康组和蚜害组在前2个隐变量的得分图(椭圆为基于Hotelling T2计算出的95%置信域); (C) 偏最小二乘法判别分析双标图(实线圆半径为1.0, 虚线圆半径为0.5); (D) 各挥发物(编号同表1)的变量重要性投影(VIP)图(虚线为取值1.0引导线)
Figure 5 The partial least square discriminant analysis for volatile contents of tea plants (A) The fraction of cumulative explained variations for the first two latent variables (LVs) (red: predictor, blue: response); (B) Scores for the healthy and infested groups with respect to the LV1 and LV2 (the eclipse denotes the 95% confidence interval based on Hotelling T2); (C) The biplot in partial least squares discrimination analysis (the radius for solid and dashed circle is 1.0 and 0.5, respectively); (D) Variable importance for the projection (VIPs) for each volatile (the number is the same as Table 1) organic compound (the dashed line is a guideline for 1.0)
[1] | 蔡晓明 (2016). 茶小绿叶蝉与植物间化学通讯物质的鉴定与田间功能验证. 博士论文. 北京: 中国农业科学院. pp. 48-50. |
[2] | 崔林, 张新亭, 周宁宁, 叶火香, 余继忠, 祝愿, 韩宝瑜 (2015). 茶互利素和蚜性信息素及其组合调控大草蛉行为的效应. 生态学报 35, 1537-1546. |
[3] |
董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷 (2020). 转录因子调控植物萜类化合物生物合成研究进展. 植物学报 55, 340-350.
DOI |
[4] | 范培珍, 韩善捷, 韩宝瑜 (2020). 灰茶尺蠖为害诱导茶树释放的互利素的鉴定. 中国生物防治学报 36, 65-71. |
[5] | 付建玉 (2017). 茶树倍半萜类物质代谢及其对虫害胁迫响应. 博士论文. 北京: 中国农业科学院. pp. 17-20. |
[6] | 韩宝瑜, 周成松 (2004). 茶梢和茶花信息物引诱有翅茶蚜效应的研究. 茶叶科学 24, 249-254. |
[7] | 韩善捷, 潘铖, 韩宝瑜 (2016). 假眼小绿叶蝉为害致茶梢挥发物变化及其引诱微小裂骨缨小蜂效应. 中国生物防治学报 32, 142-148. |
[8] | 焦龙, 蔡晓明, 边磊, 罗宗秀, 李兆群, 辛肇军, 陈宗懋 (2018). 茉莉酸类化合物: 从植物的诱导抗虫防御反应到生长-防御权衡. 应用生态学报 29, 3876-3890. |
[9] | 林郑和, 钟秋生, 陈常颂, 陈志辉, 游小妹 (2015). 不同香型茶树鲜叶挥发性组分与β-葡萄糖苷酶的相关性分析. 植物学报 50, 713-720. |
[10] | 苗爱清, 吕海鹏, 孙世利, 王力, 庞式, 赖兆祥, 曾琼, 林智 (2010). 乌龙茶香气的HS-SPME-GC-MS/GC-O研究. 茶叶科学 30, 583-587. |
[11] | 穆丹 (2011). 茶树挥发性信息素调控假眼小绿叶蝉及叶蝉三棒缨小蜂行为的功效. 博士论文. 北京: 中国农业科学院. pp. 44. |
[12] | 孙晓玲, 董文霞, 蔡晓明, 桂连友, 陈宗懋 (2016). 外用不同浓度茉莉酸甲酯诱导的茶树挥发物的种类和时序变化. 应用昆虫学报 53, 499-506. |
[13] | 王国昌 (2010). 三种害虫诱导茶树挥发物的生态功能. 博士论文. 北京: 中国农业科学院. pp. 20-22. |
[14] | 薛皎亮, 贺珺, 谢映平 (2008). 植物挥发物对天敌昆虫异色瓢虫的引诱效应. 应用与环境生物学报 14, 494-498. |
[15] |
左照江, 张汝民, 高岩 (2009). 植物间挥发物信号的研究进展. 植物学报 44, 245-252.
DOI |
[16] |
Aartsma Y, Leroy B, van der Werf W, Dicke M, Poelman EH, Bianchi FJJA (2019). Intraspecific variation in herbivore-induced plant volatiles influences the spatial range of plant-parasitoid interactions. Oikos 128, 77-86.
DOI URL |
[17] |
Abdullah ZS, Ficken KJ, Greenfield BPJ, Butt TM (2014). Innate responses to putative ancestral hosts: is the attraction of western flower thrips to pine pollen a result of relict olfactory receptors? J Chem Ecol 40, 534-540.
DOI PMID |
[18] |
Baldwin IT, Kessler A, Halitschke R (2002). Volatile signaling in plant-plant-herbivore interactions: what is real? Curr Opin Plant Biol 5, 351-354.
PMID |
[19] |
Bian L, Sun XL, Cai XM, Chen ZM (2014). Slow release of plant volatiles using sol-gel dispensers. J Econ Entomol 107, 2023-2029.
DOI PMID |
[20] |
Bustos-Segura C, Foley WJ (2018). Foliar terpene chemotypes and herbivory determine variation in plant volatile emissions. J Chem Ecol 44, 51-61.
DOI PMID |
[21] |
D'Alessandro M, Brunner V, von Mérey G, Turlings TCJ (2009). Strong attraction of the parasitoid Cotesia marginiventris towards minor volatile compounds of maize. J Chem Ecol 35, 999-1008.
DOI PMID |
[22] |
De Moraes CM, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998). Herbivore-infested plants selectively attract parasitoids. Nature 393, 570-573.
DOI URL |
[23] | Gish M, De Moraes CM, Mescher MC (2015). Herbivore- induced plant volatiles in natural and agricultural ecosystems: open questions and future prospects. Curr Opin Insect Sci 9, 1-6. |
[24] |
Guo H, Wang CZ (2019). The ethological significance and olfactory detection of herbivore-induced plant volatiles in interactions of plants, herbivorous insects, and parasitoids. Arthropod-Plant Interactions 13, 161-179.
DOI URL |
[25] |
Han BY, Chen ZM (2002a). Composition of the volatiles from intact and mechanically pierced tea aphid-tea shoot complexes and their attraction to natural enemies of the tea aphid. J Agric Food Chem 50, 2571-2575.
DOI URL |
[26] |
Han BY, Chen ZM (2002b). Composition of the volatiles from intact and tea aphid-damaged tea shoots and their allurement to several natural enemies of the tea aphid. J Appl Entomol 126, 497-500.
DOI URL |
[27] |
Han BY, Chen ZM (2002c). Behavioral and electrophysiological responses of natural enemies to synomones from tea shoots and kairomones from tea aphids, Toxoptera aurantii. J Chem Ecol 28, 2203-2219.
DOI URL |
[28] |
Han BY, Han BH (2007). EAG and behavioral responses of the wingless tea aphid Toxoptera aurantii (Homoptera: Aphididae) to tea plant volatiles. Acta Ecol Sin 27, 4485-4490.
DOI URL |
[29] |
Han BY, Zhang QH, Byers JA (2012). Attraction of the tea aphid, Toxoptera aurantii, to combinations of volatiles and colors related to tea plants. Entomol Exp Appl 144, 258-269.
DOI URL |
[30] | Heil M, Land WG (2014). Danger signals-damaged-self recognition across the tree of life. Front Plant Sci 5, 578. |
[31] |
Heil M, Silva Bueno JC (2007). Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104, 5467-5472.
DOI URL |
[32] |
Huffaker A, Pearce G, Veyrat N, Erb M, Turlings TCJ, Sartor R, Shen ZX, Briggs SP, Vaughan MM, Alborn HT, Teal PEA, Schmelz EA (2013). Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc Natl Acad Sci USA 110, 5707-5712.
DOI URL |
[33] |
Jing TT, Du WK, Gao T, Wu Y, Zhang N, Zhao MY, Jin JY, Wang JM, Schwab W, Wan XC, Song CK (2021). Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Plant Cell Environ 44, 1178-1191.
DOI URL |
[34] | Jolliffe IT, Cadima J (2016). Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci 374, 20150202. |
[35] |
Joo Y, Schuman MC, Goldberg JK, Kim SG, Yon F, Brütting C, Baldwin IT (2018). Herbivore-induced volatile blends with both “fast” and “slow” components provide robust indirect defence in nature. Funct Ecol 32, 136-149.
DOI URL |
[36] | Kitano H (2004). Biological robustness. Nat Rev Genet 5, 826-837. |
[37] |
Kost C, Heil M (2006). Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94, 619-628.
DOI URL |
[38] |
Lee LC, Liong CY, Jemain AA (2018). Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. Analyst 143, 3526-3539.
DOI URL |
[39] |
Liu GH, Yang M, Fu JY (2020). Identification and characterization of two sesquiterpene synthase genes involved in volatile-mediated defense in tea plant (Camellia sinensis). Plant Physiol Biochem 155, 650-657.
DOI URL |
[40] |
Matsui K (2006). Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9, 274-280.
PMID |
[41] |
Mu D, Cui L, Ge J, Wang MX, Liu LF, Yu XP, Zhang QH, Han BY (2012). Behavioral responses for evaluating the attractiveness of specific tea shoot volatiles to the tea green leafhopper, Empoaca vitis. Insect Sci 19, 229-238.
DOI URL |
[42] |
Nerio LS, Olivero-Verbel J, Stashenko E (2010). Repellent activity of essential oils: a review. Bioresour Technol 101, 372-378.
DOI URL |
[43] |
Ninkovic V, Markovic D, Rensing M (2021). Plant volatiles as cues and signals in plant communication. Plant Cell Environ 44, 1030-1043.
DOI URL |
[44] |
Pare PW, Tumlinson JH (1999). Plant volatiles as a defense against insect herbivores. Plant Physiol 121, 325-332.
PMID |
[45] |
Park J, Thomasson JA, Gorman Z, Brewer MJ, Rooney WL, Kolomiets MV (2020). Multivariate analysis of sorghum volatiles for the fast screening of sugarcane aphid infestation. J Asia-Pacific Entomol 23, 901-908.
DOI URL |
[46] | Sanou A, Traoré F, Ba MN, Dabiré-Binso CL, Pittendrigh BR, Sanon A (2019). Effects of volatiles from Clavigralla tomentosicollis Stål.(Hemiptera: Coreidae) adults on the host location behavior of the egg parasitoid Gryon fulviventre (crawford) (Hymenoptera: scelionidae). Int J Insect Sci 11, 1179543318825250. |
[47] |
Schmelz EA (2015). Impacts of insect oral secretions on defoliation-induced plant defense. Curr Opin Insect Sci 9, 7-15.
DOI PMID |
[48] |
Schröder R, Forstreuter M, Hilker M (2005). A plant notices insect egg deposition and changes its rate of photosynthesis. Plant Physiol 138, 470-477.
PMID |
[49] |
Shiojiri K, Ozawa R, Takabayashi J (2006). Plant volatiles, rather than light, determine the nocturnal behavior of a caterpillar. PLoS Biol 4, e164.
DOI URL |
[50] |
Simpson M, Gurr GM, Simmons AT, Wratten SD, James DG, Leeson G, Nicol HI (2011). Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agric Forest Entomol 13, 45-57.
DOI URL |
[51] |
Sobhy IS, Erb M, Turlings TCJ (2015). Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles. Pest Manag Sci 71, 686-693.
DOI URL |
[52] |
Sun XL, Wang GC, Cai XM, Jin S, Gao Y, Chen ZM (2010). The tea weevil, Myllocerinus aurolineatus, is attracted to volatiles induced by conspecifics. J Chem Ecol 36, 388-395.
DOI URL |
[53] |
Takabayashi J, Takahashi S, Dicke M, Posthumus MA (1995). Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. J Chem Ecol 21, 273-287.
DOI PMID |
[54] |
Turlings TCJ, Erb M (2018). Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63, 433-452.
DOI PMID |
[55] |
Turlings TCJ, Tumlinson JH, Lewis WJ (1990). Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250, 1251-1253.
PMID |
[56] | van der Maaten L, Hinton G (2008). Visualizing data using t-SNE. J Mach Learn Res 9, 2579-2605. |
[57] |
Wang XW, Zeng LT, Liao YY, Li JL, Tang JC, Yang ZY (2019). Formation of α-farnesene in tea ( Camellia sinensis) leaves induced by herbivore-derived wounding and its effect on neighboring tea plants. Int J Mol Sci 20, 4151.
DOI URL |
[58] |
Xiu CL, Zhang W, Xu B, Wyckhuys KAG, Cai XM, Su HH, Lu YH (2019). Volatiles from aphid-infested plants attract adults of the multicolored Asian lady beetle Harmonia axyridis. Biol Control 129, 1-11.
DOI URL |
[59] |
Ye J, Zhang LL, Zhang X, Wu XJ, Fang RX (2021). Plant defense networks against insect-borne pathogens. Trends Plant Sci 26, 272-287.
DOI URL |
[60] |
Ye M, Glauser G, Lou YG, Erb M, Hu LF (2019). Molecular dissection of early defense signaling underlying volatile- mediated defense regulation and herbivore resistance in rice. Plant Cell 31, 687-698.
DOI URL |
[61] |
Yu B, Zhang D, Yan XW, Wang JW, Yao L, Tan LH, Zhao SP, Li N, Cao WG (2016). Comparative evaluation of the chemical composition, antioxidant and antimicrobial activities of the volatile oils of hawk tea from six botanical origins. Chem Biodivers 13, 1573-1583.
DOI URL |
[62] |
Zeng LT, Liao YY, Li JL, Zhou Y, Tang JC, Dong F, Yang ZY (2017). α-farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants. Plant Sci 264, 29-36.
DOI URL |
[63] |
Zhang ZQ, Bian L, Sun XL, Luo ZX, Xin ZJ, Luo FJ, Chen ZM (2015). Electrophysiological and behavioural responses of the tea geometrid Ectropis obliqua(Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae). Pest Manag Sci 71, 96-104.
DOI URL |
[64] |
Zhang ZQ, Sun XL, Xin ZJ, Luo ZX, Gao Y, Bian L, Chen ZM (2013). Identification and field evaluation of non-host volatiles disturbing host location by the tea geometrid, Ectropis obliqua. J Chem Ecol 39, 1284-1296.
DOI URL |
[65] |
Zhao MY, Wang L, Wang JM, Jin JY, Zhang N, Lei L, Gao T, Jing TT, Zhang SR, Wu Y, Wu B, Hu YQ, Wan XC, Schwab W, Song CK (2020). Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. J Integr Plant Biol 62, 1461-1468.
DOI URL |
[1] | 张锋, Richard Dormatey, 刘寅笃, 李成举, 王云姣, 张春利, 张莹, 范又方, 姚攀锋, 毕真真, 刘玉汇, 白江平, 孙超 . 耐亚磷酸盐马铃薯的筛选与评价[J]. 植物学报, 2024, 59(4): 0-0. |
[2] | 吴相獐, 雷富民, 单壹壹, 于晶. 上海城市公园苔藓植物多样性分布格局及其环境影响因子[J]. 生物多样性, 2024, 32(2): 23364-. |
[3] | 周楷玲, 赵玉金, 白永飞. 基于Sentinel-2A数据的东北森林植物多样性监测方法研究[J]. 植物生态学报, 2022, 46(10): 1251-1267. |
[4] | 穆丹, 岂泽华, 李沁, 梁可欣, 华绍贵, 朱星雨, 焦梦婕, 饶玉春, 孙廷哲. 茶树花挥发物对叶蝉三棒缨小蜂的引诱增强效应[J]. 植物学报, 2021, 56(5): 559-572. |
[5] | 刘丽平, 宋瑞凤, 张馥, 张秀香, 彭桂香, 谭志远. 高秆野生稻内生固氮细菌多样性[J]. 生物多样性, 2020, 28(8): 1018-1025. |
[6] | 刘丹, 郭忠玲, 崔晓阳, 范春楠. 5种东北红豆杉植物群丛及其物种多样性的比较[J]. 生物多样性, 2020, 28(3): 340-349. |
[7] | 王凤珍, 唐毅. 食物网关键种的判定及其对稳健性的影响[J]. 生物多样性, 2019, 27(10): 1132-1137. |
[8] | 李巧丽, 延娜, 宋琼, 郭军战. 鲁桑叶绿体基因组序列及特征分析[J]. 植物学报, 2018, 53(1): 94-103. |
[9] | 周亚峰, 许彦宾, 王艳玲, 李琼, 胡建斌. 基于主成分-聚类分析构建甜瓜幼苗耐冷性综合评价体系[J]. 植物学报, 2017, 52(4): 520-529. |
[10] | 郜二虎, 何杰坤, 王志臣, 徐扬, 唐小平, 江海声. 全国陆生野生动物调查单元区划方案[J]. 生物多样性, 2017, 25(12): 1321-1330. |
[11] | 林小植, 李冬梅, 刘焕章, 林鸿生, 杨少荣, 范汉金, 温茹淑. 广东韩江潮州江段鱼类多样性及季节变化[J]. 生物多样性, 2016, 24(2): 185-194. |
[12] | 刘娟, 邓徐, 吕利新. 西藏八宿川西云杉树线过渡区树木生长与气候关系的一致性[J]. 植物生态学报, 2015, 39(5): 442-452. |
[13] | 陈旭波, 孟世勇, 张小飞, 韩远彬, 刘全儒. 石竹科繁缕属与孩儿参属的数量分类[J]. 植物学报, 2014, 49(4): 432-439. |
[14] | 郁万文, 刘新亮, 曹福亮, 汪贵斌, 张往祥. 不同银杏无性系叶药用成分差异及聚类分析[J]. 植物学报, 2014, 49(3): 292-305. |
[15] | 王江民, 陈发棣, 房伟民, 陈素梅, 管志勇, 唐海艳. 基于叶形特征的切花菊品种鉴别[J]. 植物学报, 2013, 48(6): 608-615. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||