植物学报 ›› 2021, Vol. 56 ›› Issue (1): 56-61.DOI: 10.11983/CBB20095
夏正俊1,*(), 李玉卓1,2, 朱金龙1, 吴红艳1, 徐坤1, 翟红1
收稿日期:
2020-05-26
接受日期:
2020-10-05
出版日期:
2021-01-01
发布日期:
2021-01-15
通讯作者:
夏正俊
作者简介:
E-mail: xiazhj@iga.ac.cn基金资助:
Zhengjun Xia1,*(), Yuzhuo Li1,2, Jinlong Zhu1, Hongyan Wu1, Kun Xu1, Hong Zhai1
Received:
2020-05-26
Accepted:
2020-10-05
Online:
2021-01-01
Published:
2021-01-15
Contact:
Zhengjun Xia
摘要:
建立简便、快速和无损种子连续取样技术流程及基因型鉴定技术体系, 可节约种植成本及缩短鉴定周期, 提高基因功能研究和育种效率。该研究利用微型电钻和空气泵等简单装置设计了一种连续且无损钻取大豆(Glycine max)种子组织的方法, 并优化了利用384深孔微孔板高通量提取DNA及基因型鉴定技术体系。该方法也可用于水稻(Oryza sativa)和玉米(Zea mays)等多种主要作物的种子取样及基因型鉴定。
夏正俊, 李玉卓, 朱金龙, 吴红艳, 徐坤, 翟红. 快速、无损大豆种子连续取样技术及其DNA制备. 植物学报, 2021, 56(1): 56-61.
Zhengjun Xia, Yuzhuo Li, Jinlong Zhu, Hongyan Wu, Kun Xu, Hong Zhai. A Rapid, Non-destructive and Continuous Sampling Technique and DNA Extraction for Soybean Seed. Chinese Bulletin of Botany, 2021, 56(1): 56-61.
图1 种子钻孔和样品采集过程 (A) 种子组织的钻取; (B) 移液枪头收集种子组织; (C) 钻取种子组织并转移至384深孔板中; (D) 一列取样完成后贴胶带保护; (E) 钻头的清洁; (F) 移液枪头和手套的清洁; (G) 钻孔后的大豆种子; (H) 钻孔大豆种子播种后14天的幼苗。中间部分为整体流程简图, 种子取样经钻取、转移和清洁3个步骤, 再进行下一个种子的钻取。
Figure 1 Procedure for seed drilling and sample collection (A) Drilling of seed tissue; (B) Dilled tissue was collected by a pipette tip; (C) Transferring into a 384 deep-well plate; (D) When all wells in a row of the 384 deep-well plate were filled, the row will be sealed with a sticky tape; (E) Cleaning of the driller; (F) Cleaning of the tip and gloves; (G) Appearance of drilled seed; (H) Seedling of drilled seed (14 days after being sown). In the middle panel, the whole procedure is shown, in which seed sampling is performed by drilling, transferring and cleaning before proceeding to the next one.
图2 大豆遗传群体经种子钻取及DNA制备后的基因型鉴定 利用Satt557和S8两对引物进行单管PCR能准确鉴定两分子标记间的重组个体(箭头)。M: 分子质量标准品ΦX174 HaeIII; 1-19: Harosoy-E1与Harosoy (e1)杂交的F2群体(在每个泳道底部标注有每个个体2个分子标记的基因型)。
Figure 2 Genotyping of a soybean genetic population through seed-drilling and thereafter DNA extraction Accurate identification of recombinant occuring between two markers, Satt557 and S8, using one tube PCR (arrow). M: Molecular weight marker ΦX174 HaeIII; 1-19: F2 population that were derived from Harosoy-E1 × Harosoy (e1) (the genotypes of each individual were indicated at the bottom of each lane).
图3 种子钻孔法鉴定结果的验证 钻孔的大豆种子出苗后, 提取其叶片DNA进行相关引物的基因型鉴定, 以验证种子基因型鉴定结果的准确性。上部和下部凝胶图分别为Satt557和S8的验证结果(底部标注了2个分子标记的基因型)。
Figure 3 Verification of genotyping results obtained through seed-drilling DNA were extracted from leaves of the plants that were developed from the drilled seeds, thereafter genotyping of Satt557 and S8 were performed to verify the accuracy of genotyping data of seed. The upper and the bottom gels are shown the genotyping result of Satt557 and S8, respectively (the genotypes of each individual were indicated at the bottom of each lane).
图4 水稻、大豆和玉米种子大小及对应钻头型号 (A) 水稻种子(平均钻孔深度为(1.52±0.12) mm, 直径0.9 mm的钻头获取的平均组织重量为(1.54±0.12) mg, 直径1.1 mm的钻头获取的平均组织重量为(2.30±0.18) mg); (B) 小粒大豆种子(平均钻孔深度为(3.88±0.37) mm, 直径1.1 mm的钻头获取的平均组织重量为(5.85±0.99) mg, 直径1.2 mm的钻头获取的平均组织重量为(6.96±0.66) mg); (C) 大粒大豆种子(平均钻孔深度为(4.63±0.43) mm, 直径1.2 mm的钻头获取的平均组织重量为(8.31±0.79) mg, 直径1.3 mm的钻头获取的平均组织重量为(9.75±0.92) mg)。(D) 玉米种子(平均钻孔深度为(3.78±0.46) mm, 直径1.2 mm的钻头获取的平均组织重量为(6.79±0.83) mg, 直径1.3 mm的钻头获取的平均组织重量为(7.97±0.98) mg)。
Figure 4 The seed dimensions of rice, soybean and maize and the selection of their appropriate drillers (A) Rice seed (average drilling depth is (1.52±0.12) mm; average acquired tissue weight is (1.54±0.12) mg for the 0.9 mm diameter driller; average acquired tissue weight is (2.30±0.18) mg for the 1.1 mm diameter driller). (B) Soybean seed (small size) (average drilling depth is (3.88±0.37) mm; average acquired tissue weight is (5.85±0.99) mg for the 1.1 mm diameter driller; average acquired tissue weight is (6.96±0.66) mg for the 1.2 mm diameter driller). (C) Soybean seed (large size) (average drilling depth is (4.63±0.43) mm; average acquired tissue weight is (8.31±0.79) mg for the 1.2 mm diameter driller; average acquired tissue weight is (9.75±0.92) mg for the 1.3 mm diameter driller). (D) Maize seed (average drilling depth is (3.78±0.46) mm; average acquired tissue weight is (6.79±0.83) mg for the 1.2 mm diameter driller; average acquired tissue weight is (7.97±0.98) mg for the 1.3 mm diameter driller.
[1] | 程文, 夏正俊, 冯献忠, 杨素欣 (2016). 一种快速、无损大豆种子DNA提取方法的建立和应用. 植物学报 51, 68-73. |
[2] | 薛勇彪, 种康, 韩斌, 桂建芳, 王台, 傅向东, 何祖华, 储成才, 田志喜, 程祝宽, 林少扬 (2015). 开启中国设计育种新篇章——“分子模块设计育种创新体系”战略性先导科技专项进展. 中国科学院院刊 30, 393-402. |
[3] | Kamiya M, Kiguchi T (2003). Rapid DNA extraction method from soybean seeds. Breed Sci 53, 277-279. |
[4] |
King Z, Serrano J, Boerma HR, Li ZL (2014). Non-toxic and efficient DNA extractions for soybean leaf and seed chips for high-throughput and large-scale genotyping. Biotechnol Lett 36, 1875-1879.
URL PMID |
[5] | McCarthy PL, Hansen JL, Zemetra RS, Berger PH (2002). Rapid identification of transformed wheat using a half- seed PCR assay. Biotechniques 32, 560-564. |
[6] | von Post R, von Post L, Dayteg C, Nilsson M, Forster BP, Tuvesson S (2003). A high-throughput DNA extraction method for barley seed. Euphytica 130, 255-260. |
[7] |
Xia ZJ, Tsubokura Y, Hoshi M, Hanawa M, Yano C, Okamura K, Ahmed TA, Anai T, Watanabe S, Hayashi M, Kawai T, Hossain KG, Masaki H, Asai K, Yamanaka N, Kubo N, Kadowaki K, Nagamura Y, Yano M, Sasaki T, Harada K (2007). An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population. DNA Res 14, 257-269.
DOI URL PMID |
[8] |
Xia ZJ, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü SX, Wu HY, Tabata S, Harada K (2012). Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109, E2155-E2164.
DOI URL PMID |
[1] | 史欢欢 雪穷 于振林 汪承焕. 密度、物种比例对盐沼植物种子萌发阶段种内、种间相互作用的影响[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[3] | 张敏, 朱教君. 光温条件对不同种源红松种子萌发的影响[J]. 植物生态学报, 2022, 46(6): 613-623. |
[4] | 金孝锋, 鲁益飞, 丁炳扬, 李根有, 陈征海, 张方钢. 浙江种子植物物种编目[J]. 生物多样性, 2022, 30(6): 21408-. |
[5] | 刘柯, 刘彬, 袁璐, 帅辉, 杨洋, 王挺进, 陈德良, 陈小荣, 杨锴斌, 金孝锋, 陈利萍. 濒危植物百山祖冷杉种子发育特征及其胚培养[J]. 植物学报, 2021, 56(5): 573-583. |
[6] | 邵晨, 李耀琪, 罗奥, 王志恒, 席祯翔, 刘建全, 徐晓婷. 不同生活型被子植物功能性状与基因组大小的关系[J]. 生物多样性, 2021, 29(5): 575-585. |
[7] | 赵晓亭, 毛凯涛, 徐佳慧, 郑钏, 罗晓峰, 舒凯. 蛋白质磷酸化修饰与种子休眠及萌发调控[J]. 植物学报, 2021, 56(4): 488-499. |
[8] | 宋松泉, 刘军, 杨华, 张文虎, 张琪, 高家东. 细胞分裂素调控种子发育、休眠与萌发的研究进展[J]. 植物学报, 2021, 56(2): 218-231. |
[9] | 钟雨辰, 王斌, 方中平, 徐小忠, 于明坚. 片段化景观中壳斗科植物种子捕食和扩散模式[J]. 植物生态学报, 2021, 45(2): 154-162. |
[10] | 李绍阳, 马红媛, 赵丹丹, 马梦谣, 亓雯雯. 火烧信号对种子萌发影响的研究进展[J]. 植物生态学报, 2021, 45(11): 1177-1190. |
[11] | 都业勤, 张迪, 王赛, 王磊, 闫兴富, 唐占辉. 湿地植物大花百合种群的性系统特征[J]. 生物多样性, 2021, 29(10): 1321-1335. |
[12] | 李慢如, 张玲. 桑寄生植物繁殖物候研究概述[J]. 生物多样性, 2020, 28(7): 833-841. |
[13] | 赵万义, 刘忠成, 叶华谷, 王蕾, 陈功锡, 刘克明, 詹选怀, 廖文波. 罗霄山脉种子植物区系及其南北分化特征[J]. 生物多样性, 2020, 28(7): 842-853. |
[14] | 杨锡福, 张洪茂, 张知彬. 植物大年结实及其与动物贮食行为之间的关系[J]. 生物多样性, 2020, 28(7): 821-832. |
[15] | 张楠,刘自广,孙世臣,刘圣怡,林建辉,彭疑芳,张晓旭,杨贺,岑曦,吴娟. 拟南芥AtR8 lncRNA对盐胁迫响应及其对种子萌发的调节作用[J]. 植物学报, 2020, 55(4): 421-429. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||