[1] |
王鑫 (2018). 被子植物的曙光: 揭秘花的起源及陆地植物生殖器官的演化. 北京: 科学出版社. pp. 348.
|
[2] |
王鑫, 刘仲健, 刘文哲, 张鑫, 郭学民, 胡光万, 张寿洲, 王亚玲, 廖文波 (2015). 突破当代植物系统学的困境. 科技导报 33(22), 97-105.
DOI
URL
|
[3] |
Arber A (1938). Herbals, Their Origin and Evolution, A Chapter in the History of Botany 1470-1670. London: Cambridge University Press. pp. 358.
|
[4] |
Arber A (1946). Introduction to Goethe’s botany. Chron Bot 10, 63-87.
|
[5] |
Arber EAN, Parkin J (1907). On the origin of angiosperms. Bot J Linn Soc 38, 29-80.
DOI
URL
|
[6] |
Bessey CE (1897). Phylogeny and taxonomy of the angiosperms. Bot Gaz 24, 145-178.
DOI
URL
|
[7] |
Canright JE (1960). The comparative morphology and relationships of the Magnoliaceae. III. Carpels. Am J Bot 47, 145-155.
|
[8] |
Crane PR, Herendeen PS, Herrera F, Shi G (2018). Diversity and homologies of corystosperm seed-bearing structures from the Early Cretaceous of Mongolia and China. In: McElwain J, ed. 10th European Palaeobotany & Palynology Conference. Dublin: Trinity College Dublin. pp. 88.
|
[9] |
Cronquist A (1988). The Evolution and Classification of Flowering Plants. Bronx: New York Botanical Garden. pp. 555.
|
[10] |
Dilcher DL, Crane PR (1984). Archaeanthus: an early angiosperm from the Cenomanian of the Western Interior of North America. Ann Missour Bot Gard 71, 351-383.
|
[11] |
Doyle JA, Endress PK (2000). Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Plant Sci 161, S121-S153.
|
[12] |
Eames AJ (1926). The role of flower anatomy in the determination of angiosperm phylogeny. In: International Congress of Plant Sciences, Section of Morphology, Histology, and Paleobotany. New York:Ithaca. pp. 423-427.
|
[13] |
Eames AJ (1961). Morphology of the Angiosperms. New York: McGraw-Hill Book Company, Inc. pp. 518.
|
[14] |
Eames AJ, MacDaniels LH (1947). An Introduction to Plant Anatomy. New York: McGraw-Hill Book Company, Inc. pp. 427.
|
[15] |
Edwards D (2003). Embryophytic sporophytes in the Rhynie and Windy field cherts. Trans Royal Soc Edinb Earth Sci 94, 397-410.
|
[16] |
Endress PK (2005). Carpels in Brasenia (Cabombaceae) are completely ascidiate despite a long stigmatic crest. Ann Bot 96, 209-215.
DOI
URL
|
[17] |
Endress PK (2019). The morphological relationship between carpels and ovules in angiosperms: pitfalls of morphological interpretation. Bot J Linn Soc 189, 201-227.
|
[18] |
Endress PK, Doyle JA (2009). Reconstructing the ancestral angiosperm flower and its initial specializations. Am J Bot 96, 22-66.
URL
PMID
|
[19] |
Friis EM, Pedersen KR, Von Balthazar M, Grimm GW, Crane PR (2009). Monetianthus mirus gen. et sp. nov., a nymphaealean flower from the Early Cretaceous of Portugal. Int J Plant Sci 170, 1086-1101.
|
[20] |
Guo XM, Xiao X, Wang GX, Gao RF (2013). Vascular anatomy of kiwi fruit and its implications for the origin of carpels. Front Plant Sci 4, 391.
DOI
URL
PMID
|
[21] |
Guo XM, Yu YY, Bai L, Gao RF (2017). Dianthus chinensis L: the sructural difference between vascular bundles in the placenta and ovary wall suggests their different origin. Front Plant Sci 8, 1986.
DOI
URL
PMID
|
[22] |
Han G, Fu X, Liu ZJ, Wang X (2013). A new angiosperm genus from the Lower Cretaceous Yixian Formation, Western Liaoning, China. Acta Geol Sin (English Edition) 87, 916-925.
|
[23] |
Han G, Liu Z, Wang X (2017). A Dichocarpum-like angiosperm from the Early Cretaceous of China. Acta Geol Sin (English Edition) 90, 1-8.
|
[24] |
Hao S, Xue J (2013). The Early Devonian Posongchong Flora of Yunnan. Beijing: Science Press. pp. 366.
|
[25] |
Herendeen PS, Friis EM, Pedersen KR, Crane PR (2017). Palaeobotanical redux: revisiting the age of the angiosperms. Nat Plants 3, 17015.
URL
PMID
|
[26] |
Hutchinson J (1926). The phylogeny of flowering plants. In: International Congress of Plant Sciences, Section of Morphology, Histology, and Paleobotany. New York: Ithaca. pp. 413-421.
|
[27] |
Hutchinson J (1968). Key to the Families of Flowering Plants of the World, 2nd edn. Oxford: Clarendon Press. pp. 117.
|
[28] |
Ji Q, Li H, Bowe M, Liu Y, Taylor DW (2004). Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, Western Liaoning, China. Acta Geol Sin (English Edition) 78, 883-892.
|
[29] |
Liu WZ, Hilu K, Wang YL (2014). From leaf and branch into a flower: Magnolia tells the story. Bot Stud 55, 28.
DOI
URL
PMID
|
[30] |
Liu ZJ, Wang X (2017). Yuhania: a unique angiosperm from the Middle Jurassic of Inner Mongolia, China. Histor Biol 29, 431-441.
|
[31] |
Liu ZJ, Wang X (2018). A novel angiosperm from the Early Cretaceous and its implications for carpel-deriving. Acta Geol Sin (English Edition) 92, 1293-1298.
|
[32] |
Mathews S, Kramer EM (2012). The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. New Phytol 194, 910-923.
DOI
URL
PMID
|
[33] |
Mendes MM, Grimm GW, Pais J, Friis EM (2014). Fossil Kajanthus lusitanicus gen. et sp. nov. from Portugal: floral evidence for Early Cretaceous Lardizabalaceae (Ranunculales, basal eudicot). Grana 53, 283-301.
|
[34] |
Miao Y, Liu ZJ, Wang M, Wang X (2017). Fossil and living cycads say "No more megasporophylls". J Morphol Anat 1, 1000107.
|
[35] |
Parkin J (1925). The phylogenetic classification of flowering plants. Nature 115, 385-387.
DOI
URL
|
[36] |
Roe JL, Nemhauser JL, Zambryski PC (1997). TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell 9, 335-353.
DOI
URL
PMID
|
[37] |
Rounsley SD, Ditta GS, Yanofsky MF (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259-1269.
URL
PMID
|
[38] |
Shi G, Crane PR, Herendeen PS, Ichinnorov N, Takahashi M, Herrera F (2019). Diversity and homologies of corystosperm seedbearing structures from the Early Cretaceous of Mongolia. J Syst Palaeontol 17, 997-1029.
DOI
URL
|
[39] |
Shi G, Leslie AB, Herendeen PS, Herrera F, Ichinnorov N, Takahashi M, Knopf P, Crane PR (2016). Early Cretaceous Umkomasia from Mongolia: implications for homology of corystosperm cupules. New Phytol 210, 1418-1429.
URL
PMID
|
[40] |
Skinner DJ, Hill TA, Gasser CS (2004). Regulation of ovule development. Plant Cell 16, S32-S45.
URL
PMID
|
[41] |
Sun G, Dilcher DL, Zheng S, Zhou Z (1998). In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282, 1692-1695.
DOI
URL
PMID
|
[42] |
Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002). Archaefructaceae, a new basal angiosperm family. Science 296, 899-904.
DOI
URL
PMID
|
[43] |
Takhtajan A (1969). Flowering Plants, Origin and Dispersal. Edinburgh: Oliver & Boyd Ltd. pp. 301.
|
[44] |
Takhtajan A (1980). Outline of the classification of flowering plants (magnoliophyta). Bot Rev 46, 225-359.
|
[45] |
Takhtajan A (1997). Diversity and Classification of Flowering Plants. New York: Columbia University Press. pp. 643.
|
[46] |
von Goethe JWV (1790). Versuch die Metamorphose der Pflanzen zu erklären. Gotha: Carl Wilhelm Ettinger. pp. 68.
|
[47] |
Wang X (2010). The Dawn Angiosperms: Uncovering the Origin of Flowering Plants. Heidelberg: Springer. pp. 236.
|
[48] |
Wang X (2018a). The Dawn Angiosperms: Uncovering the Origin of Flowering Plants, 2nd edn. Cham: Springer. pp. 407.
|
[49] |
Wang X (2018b). An era of errors: unveiling the truth of Archaeanthus and its implications for angiosperm systematics. ChinaXiv 201804. 201934.
|
[50] |
Wang X, Luo B (2013). Mechanical pressure, not genes, makes ovulate parts leaf-like in Cycas. Am J Plant Sci 4, 53-57.
|
[51] |
Wang X, Wang S (2010). Xingxueanthus: an enigmatic Jurassic seed plant and its implications for the origin of angiosperm. Acta Geol Sin (English Edition) 84, 47-55.
|
[52] |
Wang X, Zheng XT (2012). Reconsiderations on two characters of early angiosperm Archaefructus. Palaeoworld 21, 193-201.
DOI
URL
|
[53] |
Wieland GR (1906). American Fossil Cycads. Washington: The Wilkens Sheiry Printing Co. pp. 295.
|
[54] |
Zhang X, Liu W, Wang X (2017). How the ovules get enclosed in magnoliaceous carpels. PLoS One 12, e0174955.
URL
PMID
|
[55] |
Zhang X, Zhang Z, Zhao Z (2019). Floral ontogeny of Illicium lanceolatum (Schisandraceae) and its implications on carpel homology. Phytotaxa 416, 200-210.
DOI
URL
|