植物学报 ›› 2020, Vol. 55 ›› Issue (4): 505-512.DOI: 10.11983/CBB19093 cstr: 32102.14.CBB19093
王鑫1,*(),刘仲健2,3,刘文哲4,廖文波5,张鑫6,刘忠7,胡光万8,9,郭学民10,王亚玲11
收稿日期:
2019-05-21
接受日期:
2020-04-15
出版日期:
2020-07-01
发布日期:
2020-05-21
通讯作者:
王鑫
基金资助:
Xin Wang1,*(),Zhongjian Liu2,3,Wenzhe Liu4,Wenbo Liao5,Xin Zhang6,Zhong Liu7,Guangwan Hu8,9,Xuemin Guo10,Yaling Wang11
Received:
2019-05-21
Accepted:
2020-04-15
Online:
2020-07-01
Published:
2020-05-21
Contact:
Xin Wang
摘要: 传统的植物学理论中, 被子植物雌蕊的基本单位心皮被认为是变态的叶(即大孢子叶)通过纵向对折和内卷演化而来。该理论造成了被子植物和裸子植物之间不可逾越的鸿沟。近年来提出的一统理论认为被子植物的心皮由长胚珠的枝和包裹这个枝的叶共同组成, 从而弥合了被子植物与裸子植物之间的鸿沟。最近, 当代植物学界两大权威人物Peter R. Crane和Peter K. Endress分别撰文, 发表了不同于传统理论的观点。Endress认为, 心皮由胚珠和叶性器官组成; 而Crane认为, 所有的胚珠都长在枝上。结合二者的结论, 不难得出“心皮实际上等同于一个长胚珠的枝加上一个叶”的论断。这在某种意义上等于认同了一统理论的观点。两位权威人物观点的转变预示着植物学理论将很快发生根本性的转变。该文向国内植物学同行通报这一最新动态, 以期让我国学者能够了解最新理论。
王鑫,刘仲健,刘文哲,廖文波,张鑫,刘忠,胡光万,郭学民,王亚玲. 走出歌德的阴影: 迈向更加科学的植物系统学. 植物学报, 2020, 55(4): 505-512.
Xin Wang,Zhongjian Liu,Wenzhe Liu,Wenbo Liao,Xin Zhang,Zhong Liu,Guangwan Hu,Xuemin Guo,Yaling Wang. Stepping out of the Shadow of Goethe: for a More Scientific Plant Systematics. Chinese Bulletin of Botany, 2020, 55(4): 505-512.
[1] | 王鑫 (2018). 被子植物的曙光: 揭秘花的起源及陆地植物生殖器官的演化. 北京: 科学出版社. pp. 348. |
[2] |
王鑫, 刘仲健, 刘文哲, 张鑫, 郭学民, 胡光万, 张寿洲, 王亚玲, 廖文波 (2015). 突破当代植物系统学的困境. 科技导报 33(22), 97-105.
DOI URL |
[3] | Arber A (1938). Herbals, Their Origin and Evolution, A Chapter in the History of Botany 1470-1670. London: Cambridge University Press. pp. 358. |
[4] | Arber A (1946). Introduction to Goethe’s botany. Chron Bot 10, 63-87. |
[5] |
Arber EAN, Parkin J (1907). On the origin of angiosperms. Bot J Linn Soc 38, 29-80.
DOI URL |
[6] |
Bessey CE (1897). Phylogeny and taxonomy of the angiosperms. Bot Gaz 24, 145-178.
DOI URL |
[7] | Canright JE (1960). The comparative morphology and relationships of the Magnoliaceae. III. Carpels. Am J Bot 47, 145-155. |
[8] | Crane PR, Herendeen PS, Herrera F, Shi G (2018). Diversity and homologies of corystosperm seed-bearing structures from the Early Cretaceous of Mongolia and China. In: McElwain J, ed. 10th European Palaeobotany & Palynology Conference. Dublin: Trinity College Dublin. pp. 88. |
[9] | Cronquist A (1988). The Evolution and Classification of Flowering Plants. Bronx: New York Botanical Garden. pp. 555. |
[10] | Dilcher DL, Crane PR (1984). Archaeanthus: an early angiosperm from the Cenomanian of the Western Interior of North America. Ann Missour Bot Gard 71, 351-383. |
[11] | Doyle JA, Endress PK (2000). Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Plant Sci 161, S121-S153. |
[12] | Eames AJ (1926). The role of flower anatomy in the determination of angiosperm phylogeny. In: International Congress of Plant Sciences, Section of Morphology, Histology, and Paleobotany. New York:Ithaca. pp. 423-427. |
[13] | Eames AJ (1961). Morphology of the Angiosperms. New York: McGraw-Hill Book Company, Inc. pp. 518. |
[14] | Eames AJ, MacDaniels LH (1947). An Introduction to Plant Anatomy. New York: McGraw-Hill Book Company, Inc. pp. 427. |
[15] | Edwards D (2003). Embryophytic sporophytes in the Rhynie and Windy field cherts. Trans Royal Soc Edinb Earth Sci 94, 397-410. |
[16] |
Endress PK (2005). Carpels in Brasenia (Cabombaceae) are completely ascidiate despite a long stigmatic crest. Ann Bot 96, 209-215.
DOI URL |
[17] | Endress PK (2019). The morphological relationship between carpels and ovules in angiosperms: pitfalls of morphological interpretation. Bot J Linn Soc 189, 201-227. |
[18] |
Endress PK, Doyle JA (2009). Reconstructing the ancestral angiosperm flower and its initial specializations. Am J Bot 96, 22-66.
URL PMID |
[19] | Friis EM, Pedersen KR, Von Balthazar M, Grimm GW, Crane PR (2009). Monetianthus mirus gen. et sp. nov., a nymphaealean flower from the Early Cretaceous of Portugal. Int J Plant Sci 170, 1086-1101. |
[20] |
Guo XM, Xiao X, Wang GX, Gao RF (2013). Vascular anatomy of kiwi fruit and its implications for the origin of carpels. Front Plant Sci 4, 391.
DOI URL PMID |
[21] |
Guo XM, Yu YY, Bai L, Gao RF (2017). Dianthus chinensis L: the sructural difference between vascular bundles in the placenta and ovary wall suggests their different origin. Front Plant Sci 8, 1986.
DOI URL PMID |
[22] | Han G, Fu X, Liu ZJ, Wang X (2013). A new angiosperm genus from the Lower Cretaceous Yixian Formation, Western Liaoning, China. Acta Geol Sin (English Edition) 87, 916-925. |
[23] | Han G, Liu Z, Wang X (2017). A Dichocarpum-like angiosperm from the Early Cretaceous of China. Acta Geol Sin (English Edition) 90, 1-8. |
[24] | Hao S, Xue J (2013). The Early Devonian Posongchong Flora of Yunnan. Beijing: Science Press. pp. 366. |
[25] |
Herendeen PS, Friis EM, Pedersen KR, Crane PR (2017). Palaeobotanical redux: revisiting the age of the angiosperms. Nat Plants 3, 17015.
URL PMID |
[26] | Hutchinson J (1926). The phylogeny of flowering plants. In: International Congress of Plant Sciences, Section of Morphology, Histology, and Paleobotany. New York: Ithaca. pp. 413-421. |
[27] | Hutchinson J (1968). Key to the Families of Flowering Plants of the World, 2nd edn. Oxford: Clarendon Press. pp. 117. |
[28] | Ji Q, Li H, Bowe M, Liu Y, Taylor DW (2004). Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, Western Liaoning, China. Acta Geol Sin (English Edition) 78, 883-892. |
[29] |
Liu WZ, Hilu K, Wang YL (2014). From leaf and branch into a flower: Magnolia tells the story. Bot Stud 55, 28.
DOI URL PMID |
[30] | Liu ZJ, Wang X (2017). Yuhania: a unique angiosperm from the Middle Jurassic of Inner Mongolia, China. Histor Biol 29, 431-441. |
[31] | Liu ZJ, Wang X (2018). A novel angiosperm from the Early Cretaceous and its implications for carpel-deriving. Acta Geol Sin (English Edition) 92, 1293-1298. |
[32] |
Mathews S, Kramer EM (2012). The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. New Phytol 194, 910-923.
DOI URL PMID |
[33] | Mendes MM, Grimm GW, Pais J, Friis EM (2014). Fossil Kajanthus lusitanicus gen. et sp. nov. from Portugal: floral evidence for Early Cretaceous Lardizabalaceae (Ranunculales, basal eudicot). Grana 53, 283-301. |
[34] | Miao Y, Liu ZJ, Wang M, Wang X (2017). Fossil and living cycads say "No more megasporophylls". J Morphol Anat 1, 1000107. |
[35] |
Parkin J (1925). The phylogenetic classification of flowering plants. Nature 115, 385-387.
DOI URL |
[36] |
Roe JL, Nemhauser JL, Zambryski PC (1997). TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell 9, 335-353.
DOI URL PMID |
[37] |
Rounsley SD, Ditta GS, Yanofsky MF (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259-1269.
URL PMID |
[38] |
Shi G, Crane PR, Herendeen PS, Ichinnorov N, Takahashi M, Herrera F (2019). Diversity and homologies of corystosperm seedbearing structures from the Early Cretaceous of Mongolia. J Syst Palaeontol 17, 997-1029.
DOI URL |
[39] |
Shi G, Leslie AB, Herendeen PS, Herrera F, Ichinnorov N, Takahashi M, Knopf P, Crane PR (2016). Early Cretaceous Umkomasia from Mongolia: implications for homology of corystosperm cupules. New Phytol 210, 1418-1429.
URL PMID |
[40] |
Skinner DJ, Hill TA, Gasser CS (2004). Regulation of ovule development. Plant Cell 16, S32-S45.
URL PMID |
[41] |
Sun G, Dilcher DL, Zheng S, Zhou Z (1998). In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282, 1692-1695.
DOI URL PMID |
[42] |
Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002). Archaefructaceae, a new basal angiosperm family. Science 296, 899-904.
DOI URL PMID |
[43] | Takhtajan A (1969). Flowering Plants, Origin and Dispersal. Edinburgh: Oliver & Boyd Ltd. pp. 301. |
[44] | Takhtajan A (1980). Outline of the classification of flowering plants (magnoliophyta). Bot Rev 46, 225-359. |
[45] | Takhtajan A (1997). Diversity and Classification of Flowering Plants. New York: Columbia University Press. pp. 643. |
[46] | von Goethe JWV (1790). Versuch die Metamorphose der Pflanzen zu erklären. Gotha: Carl Wilhelm Ettinger. pp. 68. |
[47] | Wang X (2010). The Dawn Angiosperms: Uncovering the Origin of Flowering Plants. Heidelberg: Springer. pp. 236. |
[48] | Wang X (2018a). The Dawn Angiosperms: Uncovering the Origin of Flowering Plants, 2nd edn. Cham: Springer. pp. 407. |
[49] | Wang X (2018b). An era of errors: unveiling the truth of Archaeanthus and its implications for angiosperm systematics. ChinaXiv 201804. 201934. |
[50] | Wang X, Luo B (2013). Mechanical pressure, not genes, makes ovulate parts leaf-like in Cycas. Am J Plant Sci 4, 53-57. |
[51] | Wang X, Wang S (2010). Xingxueanthus: an enigmatic Jurassic seed plant and its implications for the origin of angiosperm. Acta Geol Sin (English Edition) 84, 47-55. |
[52] |
Wang X, Zheng XT (2012). Reconsiderations on two characters of early angiosperm Archaefructus. Palaeoworld 21, 193-201.
DOI URL |
[53] | Wieland GR (1906). American Fossil Cycads. Washington: The Wilkens Sheiry Printing Co. pp. 295. |
[54] |
Zhang X, Liu W, Wang X (2017). How the ovules get enclosed in magnoliaceous carpels. PLoS One 12, e0174955.
URL PMID |
[55] |
Zhang X, Zhang Z, Zhao Z (2019). Floral ontogeny of Illicium lanceolatum (Schisandraceae) and its implications on carpel homology. Phytotaxa 416, 200-210.
DOI URL |
[1] | 赵白龙, 李业亮, 王宇飞, 孙斌. 十大功劳属(小檗科)的叶结构分型新体系[J]. 植物学报, 2025, 60(4): 1-0. |
[2] | 褚晓琳, 张全国. 演化速率假说的实验验证研究进展[J]. 生物多样性, 2025, 33(4): 25019-. |
[3] | 夏琳凤, 李瑞, 王海政, 冯大领, 王春阳. 轮藻门植物基因组学研究进展[J]. 植物学报, 2025, 60(2): 271-282. |
[4] | 孙亚君. 何谓高等或低等生物——澄清《物种起源》所蕴含的生物等级性的涵义及其成立性[J]. 生物多样性, 2025, 33(1): 24394-. |
[5] | 何花, 谭敦炎, 杨晓琛. 被子植物隐性雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[6] | 杨继轩, 王雪霏, 顾红雅. 西藏野生拟南芥开花时间变异的遗传基础[J]. 植物学报, 2024, 59(3): 373-382. |
[7] | 杨智, 杨永. 重要林木樟科植物全基因组测序研究进展[J]. 植物学报, 2024, 59(2): 302-318. |
[8] | 蒋陈焜, 郁文彬, 饶广远, 黎怀成, Julien B. Bachelier, Hartmut H. Hilger, Theodor C. H. Cole. 植物系统发生海报——以演化视角介绍植物多样性的科教资料项目[J]. 生物多样性, 2024, 32(11): 24210-. |
[9] | 张飞飞, 杨天凤, 陈莉荣, 刘冬梅, 杨柳园, 杨杜宇, 鞠鹏, 陆露. 被子植物花粉颜色多样性及应用研究进展[J]. 生物多样性, 2024, 32(1): 23346-. |
[10] | 董小云, 魏家萍, 崔俊美, 武泽峰, 郑国强, 李辉, 王莹, 田海燕, 刘自刚. 植物抗冻蛋白研究进展[J]. 植物学报, 2023, 58(6): 966-981. |
[11] | 景昭阳, 程可光, 舒恒, 马永鹏, 刘平丽. 全基因组重测序方法在濒危植物保护中的应用[J]. 生物多样性, 2023, 31(5): 22679-. |
[12] | 金恒镳. 从天择到人择: 在华莱士的肩膀上看地球的未来[J]. 生物多样性, 2023, 31(12): 23267-. |
[13] | 朱华. 地质事件和季风气候影响了云南植物区系和植被的演化[J]. 生物多样性, 2023, 31(12): 23262-. |
[14] | 刘珂, 韩思成, 遇赫, 罗述金. 荒漠猫的演化遗传、分类和保护研究进展[J]. 生物多样性, 2022, 30(9): 22396-. |
[15] | 钱宏, 张健, 赵静超. 世界上已知维管植物有多少种? 基于多个全球植物数据库的整合[J]. 生物多样性, 2022, 30(7): 22254-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||