植物学报 ›› 2023, Vol. 58 ›› Issue (6): 966-981.DOI: 10.11983/CBB22248

• 专题论坛 • 上一篇    下一篇

植物抗冻蛋白研究进展

董小云1,2, 魏家萍1, 崔俊美1, 武泽峰1, 郑国强1,2, 李辉1,2, 王莹1,2, 田海燕1,2, 刘自刚1,2,*()   

  1. 1甘肃农业大学, 干旱生境作物学国家重点实验室, 兰州 730070
    2甘肃农业大学农学院, 兰州 730070
  • 收稿日期:2022-10-20 接受日期:2023-03-08 出版日期:2023-11-01 发布日期:2023-11-27
  • 通讯作者: * E-mail: lzgworking@163.com
  • 基金资助:
    甘肃省科技重大专项(22ZD6NA009);国家自然科学基金(32360520);甘肃省重点人才项目(GSRC-2023-1-2);甘肃省自然科学基金(23JRRA1408);甘肃省教育厅产业支撑计划(2021CYZC-46);甘肃省教育厅2023年研究生创新之星(2023CXZX-647);中央引导地方科技专项(ZCYD2020-2-3)

Research Progress in Plant Antifreeze Protein

Xiaoyun Dong1,2, Jiaping Wei1, Junmei Cui1, Zefeng Wu1, Guoqiang Zheng1,2, Hui Li1,2, Ying Wang1,2, Haiyan Tian1,2, Zigang Liu1,2,*()   

  1. 1State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
    2College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
  • Received:2022-10-20 Accepted:2023-03-08 Online:2023-11-01 Published:2023-11-27
  • Contact: * E-mail: lzgworking@163.com

摘要: 温度是决定植物地理分布的主要环境因子之一, 分布于高纬度、高海拔地区的寒地植物, 在其生活史周期内通常会遭遇一段时期的零度以下低温。当环境温度降至冰点以下, 植物体内水分子趋向于形成冰晶体, 不断增大的冰晶对植物组织结构造成致命损伤。为适应冷冻环境, 寒地植物病程相关蛋白(PR)及相关的WRKY转录因子进化成为能与冰面特异吸附结合、高效抑制冰晶形成和生长的抗冻蛋白(AFPs)。目前, 已从冬黑麦(Secale cereale)等近百种植物中分离鉴定了AFPs。与昆虫AFPs相比, 植物AFPs具有极高的重结晶抑制活性, 可有效防止形成体内大冰晶。低温和病原菌均可诱导寒地植物合成AFP。有趣的是, 仅冷诱导合成的AFPs有水解酶/抗冻活性双重分子功能。然而, 越来越多的证据表明, PR-AFP仅具有水解酶/抗冻活性的其中一种, 其转化由翻译后肽差异折叠控制/调节。AFP因具有独特的分子功能与广阔的应用前景而逐渐成为植物学领域的研究热点。该文对近年来相关领域取得的研究进展进行系统综述。

关键词: 植物抗冻蛋白, 抗冻活性, 分子演化, 表达调控

Abstract: Temperature is one of the major environmental determinants of plant geographical distribution. Plants distri- buted at high latitudes or altitudes usually suffer a period of sub-zero temperature during their life cycle. When the ambient temperature drops to the freezing point, the water molecules in plants form ice crystals, causing fatal damage to plant tissue structure. In order to adapt to the freezing environment, the pathogenesis-related protein PR (PR) and its related WRKY transcription factors in cold climate plants have evolved into antifreeze proteins (AFPs) that can bind specifically to the ice surface and effectively inhibit the formation and growth of ice crystals. Currently, AFPs have been identified in nearly 100 plant species, such as winter rye (Secale cereale). Compared with insect AFPs, plant AFPs have extremely high recrystallization inhibition activity, which can effectively prevent the formation of large ice crystals in vivo. Both low temperature and pathogens can induce AFP synthesis in cold climate plants. Interestingly, only the cold-induced AFPs have dual molecular functions as hydrolase/antifreeze activity. The PR-AFPs, however, possess only one of hydrolase/antifreeze activites, whose conversion is controlled/regulated by post-translational peptide differential folding, as suggested with growing evidence. AFP has gradually become one of the hot targets in botanical research due to its unique molecular function and its promising applications. This paper will provide a systematic review of recent progress in this area.

Key words: plant antifreeze protein, antifreeze activity, molecular evolution, expression regulation