植物学报 ›› 2016, Vol. 51 ›› Issue (1): 1-8.DOI: 10.11983/CBB15118
• 特邀综述 • 下一篇
收稿日期:
2015-07-02
接受日期:
2015-08-05
出版日期:
2016-01-01
发布日期:
2016-02-01
通讯作者:
王小菁
作者简介:
? 共同第一作者
基金资助:
Chunmei Zhong, Xiaojing Wang*
Received:
2015-07-02
Accepted:
2015-08-05
Online:
2016-01-01
Published:
2016-02-01
Contact:
Wang Xiaojing
About author:
? These authors contributed equally to this paper
摘要: GASA蛋白是植物特有的一类富含半胱氨酸的小分子蛋白, 大多定位于细胞壁, 在植物生长发育和激素信号转导过程中发挥重要作用。该蛋白具有富含12个半胱氨酸残基的GASA结构域, 该结构域被认为是GASA蛋白维持空间结构和发挥功能的关键区域。该文重点综述了植物GASA蛋白的分子结构、亚细胞定位和生物学功能, 并对相关领域的研究进行了 展望。
钟春梅, 王小菁. 富含半胱氨酸的GASA小分子蛋白研究进展. 植物学报, 2016, 51(1): 1-8.
Chunmei Zhong, Xiaojing Wang. Progress in Cysteine-rich Gibberellic Acid-stimulated Arabidopsis Protein. Chinese Bulletin of Botany, 2016, 51(1): 1-8.
1 | 黄先忠, 蒋才富, 廖立力, 傅向东 (2006). 赤霉素作用机理的分子基础与调控模式研究进展. 植物学通报 23, 499-510. |
2 | 刘秋华, 罗曼, 彭建宗, 王小菁 (2015). 水稻OsGASR4基因及其启动子的克隆与表达分析. 华南师范大学学报(自然科学版) 47, 81-86. |
3 | Almasia NI, Bazzini AA, Hopp HE, Vazquez-Rovere C (2008). Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants.Mol Plant Pathol 9, 329-338. |
4 | Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M, Gomez-Cadenas A, Nicolas C (2009). Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds.Plant Physiol 150, 1335-1344. |
5 | Aubert D, Chevillard M, Dorne AM, Arlaud G, Herzog M (1998). Expression patterns of GASA genes in Arabidopsis thaliana: the GASA4 gene is up-regulated by gibberellins in meristematic regions.Plant Mol Biol 36, 871-883. |
6 | Balaji V, Smart CD (2012). Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum).Transgenic Res 21, 23-37. |
7 | Ben-Nissan G, Lee JY, Borohov A, Weiss D (2004). GIP, a Petunia hybrida GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. Plant J 37, 229-238. |
8 | Ben-Nissan G, Weiss D (1996). The petunia homologue of tomato gast1: transcript accumulation coincides with gibberellin-induced corolla cell elongation.Plant Mol Biol 32, 1067-1074. |
9 | Berrocal-Lobo M, Segura A, Moreno M, Lopez G, Garcia-Olmedo F, Molina A (2002). Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection.Plant Physiol 128, 951-961. |
10 | Betz SF (1993). Disulfide bonds and the stability of globular proteins.Protein Sci 2, 1551-1558. |
11 | Bindschedler LV, Whitelegge JP, Millar DJ, Bolwell GP (2006). A two component chitin-binding protein from French bean—association of a proline-rich protein with a cysteine-rich polypeptide.FEBS Lett 580, 1541-1546. |
12 | Blanco-Portales R, Bellido ML, Garcia-Caparros N, Medina-Puche L, Caballero-Repullo JL, Gonzalez-Reyes JA, Munoz-Blanco J, Moyano E (2012). The strawberry FaGAST2 gene determines receptacle cell size during fruit development and ripening.FEBS J 279, 82-82. |
13 | Broekaert WF, Cammue BPA, DeBolle MFC, Thevissen K, DeSamblanx GW, Osborn RW (1997). Antimicrobial peptides from plants.Crit Rev Plant Sci 16, 297-323. |
14 | Ceserani T, Trofka A, Gandotra N, Nelson T (2009). VH1/BRL2 receptor-like kinase interacts with vascular-specific adaptor proteins VIT and VIK to influence leaf venation.Plant J 57, 1000-1014. |
15 | Cheong JJ, Lee GH, Kwon HB (1999). Expression and regulation of the RSI-1 gene during lateral root initiation.J Plant Biol 42, 259-265. |
16 | Darby N, Creighton TE (1995). Disulfide bonds in protein folding and stability.Methods Mol Biol 40, 219-252. |
17 | de la Fuente JI, Amaya I, Castillejo C, Sanchez-Sevilla JF, Quesada MA, Botella MA, Valpuesta V (2006). The strawberry gene FaGAST affects plant growth through inhibition of cell elongation.J Exp Bot 57, 2401-2411. |
18 | Furukawa T, Sakaguchi N, Shimada H (2006). Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles.Genes Genet Syst 81, 171-180. |
19 | Harris PWR, Yang SH, Molina A, Lopez G, Middleditch M, Brimble MA (2014). Plant antimicrobial peptides snakin-1 and snakin-2: chemical synthesis and insights into the disulfide connectivity.Chem-Eur J 20, 5102-5110. |
20 | Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014). A peptide hormone and its receptor protein kinase regulate plant cell expansion.Science 343, 408-411. |
21 | Herzog M, Dorne AM, Grellet F (1995). GASA, a gibberellin-regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene.Plant Mol Biol 27, 743-752. |
22 | Kotilainen M, Helariutta Y, Mehto M, Pollanen E, Albert VA, Elomaa P, Teeri TH (1999). GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida.Plant Cell 11, 1093-1104. |
23 | Kovalskaya N, Hammond RW (2009). Expression and functional characterization of the plant antimicrobial sna- kin-1 and defensin recombinant proteins.Protein Expres Purif 63, 12-17. |
24 | Kwon HB, Lee GH, Cheong JJ (1999). Expression of the RSI-1 gene during development of roots and reproductive organs in tomato.J Plant Biol 42, 266-272. |
25 | Li KL, Bai X, Li Y, Cai H, Ji W, Tang LL, Wen YD, Zhu YM (2011). GsGASA1 mediated root growth inhibition in response to chronic cold stress is marked by the accumulation of DELLAs.J Plant Physiol 168, 2153-2160. |
26 | Liu ZH, Zhu L, Shi HY, Chen Y, Zhang JM, Zheng Y, Li XB (2013). Cotton GASL genes encoding putative gibberellin-regulated proteins are involved in response to GA signaling in fiber development.Mol Biol Rep 40, 4561-4570. |
27 | Mao ZC, Zheng JY, Wang YS, Chen GH, Yang YH, Feng DX, Xie BY (2011). The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper.Phytoparasitica 39, 151-164. |
28 | Miyakawa T, Hatano K, Miyauchi Y, Suwa Y, Sawano Y, Tanokura M (2014). A secreted protein with plant-specific cysteine-rich motif functions as a mannose-binding lectin that exhibits antifungal activity.Plant Physiol 166, 766-778. |
29 | Moyano-Canete E, Bellido ML, Garcia-Caparros N, Medina-Puche L, Amil-Ruiz F, Gonzalez-Reyes JA, Caballero JL, Munoz-Blanco J, Blanco-Portales R (2013). FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle.Plant Cell Physiol 54, 218-236. |
30 | Nahirnak V, Almasia NI, Fernandez PV, Hopp HE, Estevez JM, Carrari F, Vazquez-Rovere C (2012). Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition.Plant Physiol 158, 252-263. |
31 | Peng JZ, Lai LJ, Wang XJ (2008). PRGL: a cell wall proline-rich protein containning GASA domain in Gerbera hybrida.Sci China Ser C 51, 520-525. |
32 | Peng JZ, Lai LJ, Wang XJ (2010). Temporal and spatial expression analysis of PRGL in Gerbera hybrida.Mol Biol Rep 37, 3311-3317. |
33 | Porto WF, Franco OL (2013). Theoretical structural insights into the snakin/GASA family.Peptides 44, 163-167. |
34 | Roxrud I, Lid SE, Fletcher JC, Schmidt ED, Opsahl- Sorteberg HG (2007). GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development.Plant Cell Physiol 48, 471-483. |
35 | Rubinovich L, Ruthstein S, Weiss D (2014). The Arabidopsis cysteine-rich GASA5 is a redox-active metalloprotein that suppresses gibberellin responses.Mol Plant 7, 244-247. |
36 | Rubinovich L, Weiss D (2010). The Arabidopsis cysteine- rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta.Plant J 64, 1018-1027. |
37 | Segura A, Moreno M, Madueno F, Molina A, Garcia- Olmedo F (1999). Snakin-1, a peptide from potato that is active against plant pathogens.Mol Plant Microbe In 12, 16-23. |
38 | Shi L, Gast RT, Gopalraj M, Olszewski NE (1992). Characterization of a shoot-specific, GA3- and ABA-regulated gene from tomato. Plant J 2, 153-159. |
39 | Silverstein KAT, Moskal WA, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (2007). Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants.Plant J 51, 262-280. |
40 | Srivastava R, Liu JX, Guo H, Yin Y, Howell SH (2009). Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis.Plant J 59, 930-939. |
41 | Stes E, Gevaert K, De Smet I (2015). Phosphoproteomics- based peptide ligand-receptor kinase pairing. Commentary on: “A peptide hormone and its receptor protein kinase regulate plant cell expansion”.Front Plant Sci 6, 224. |
42 | Sun S, Wang H, Yu H, Zhong C, Zhang X, Peng J, Wang X (2013). GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation.J Exp Bot 64, 1637-1647. |
43 | Taylor BH, Scheuring CF (1994). A molecular marker for lateral root initiation: the RSI-1 gene of tomato (Lycopersicon esculentum Mill) is activated in early lateral root primordia.Mol Gen Genet 243, 148-157. |
44 | Wang L, Wang Z, Xu YY, Joo SH, Kim SK, Xue Z, Xu ZH, Wang ZY, Chong K (2009). OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice.Plant J 57, 498-510. |
45 | Wigoda N, Ben-Nissan G, Granot D, Schwartz A, Weiss D (2006). The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity.Plant J 48, 796-805. |
46 | Wolf S, van der Does D, Ladwig F, Sticht C, Kolbeck A, Schurholz AK, Augustin S, Keinath N, Rausch T, Greiner S, Schumacher K, Harter K, Zipfel C, Hofte H (2014). A receptor-like protein mediates the response to pectin modification by activating brassinosteroid signaling.Proc Natl Acad Sci USA 111, 15261-15266. |
47 | Yamada M, Sawa S (2013). The roles of peptide hormones during plant root development.Curr Opin Plant Biol 16, 56-61. |
48 | Yu F, Qian L, Nibau C, Duan Q, Kita D, Levasseur K, Li X, Lu C, Li H, Hou C, Li L, Buchanan BB, Chen L, Cheung AY, Li D, Luan S (2012). FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase.Proc Natl Acad Sci USA 109, 14693-14698. |
49 | Zhang S, Wang X (2011). Overexpression of GASA5 increases the sensitivity of Arabidopsis to heat stress.J Plant Physiol 168, 2093-2101. |
50 | Zhang S, Yang C, Peng J, Sun S, Wang X (2009). GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana.Plant Mol Biol 69, 745-759. |
51 | Zhang SC, Wang XJ (2008). Expression pattern of GASA, downstream genes of DELLA, in Arabidopsis.Chin Sci Bull 53, 3839-3846. |
52 | Zimmermann R, Sakai H, Hochholdinger F (2010). The gibberellic acid stimulated-like gene family in maize and its role inlateral root development.Plant Physiol 152, 356-365. |
[1] | 白明义, 彭金荣, 傅向东. 赤霉素和油菜素内酯信号通路双重调控助力小麦新一轮“绿色革命”[J]. 植物学报, 2023, 58(2): 194-198. |
[2] | 范业赓,丘立杭,黄杏,周慧文,甘崇琨,李杨瑞,杨荣仲,吴建明,陈荣发. 甘蔗节间伸长过程赤霉素生物合成关键基因的表达及相关植物激素动态变化[J]. 植物学报, 2019, 54(4): 486-496. |
[3] | 史册, 罗盼, 邹颉, 孙蒙祥. DELLA蛋白在被子植物有性生殖中的作用[J]. 植物学报, 2018, 53(6): 745-755. |
[4] | 帅海威, 孟永杰, 陈锋, 周文冠, 罗晓峰, 杨文钰, 舒凯. 植物荫蔽胁迫的激素信号响应[J]. 植物学报, 2018, 53(1): 139-148. |
[5] | 黄先忠 蒋才富 廖立力 傅向东. 赤霉素作用机理的分子基础与调控模式研究进展[J]. 植物学报, 2006, 23(5): 499-510. |
[6] | 祖元刚 贾晶 王文杰 杨逢建 陈华峰 张乃静. 假苍耳的生活史进程中几种生理生化指标的变化[J]. 植物学报, 2006, 23(4): 348-355. |
[7] | 黄志刚 李玲 陈兆平 文方德. SPINDLY 与赤霉素的信号转导[J]. 植物学报, 2005, 22(01): 100-106. |
[8] | 王伟 朱平 程克棣. 植物赤霉素生物合成和信号传导的分子生物学[J]. 植物学报, 2002, 19(02): 137-149. |
[9] | 李兴军 李三玉 林金星. 激素信号调节果树花芽发端假说的概述[J]. 植物学报, 2001, 18(06): 678-683. |
[10] | 钟希琼 王惠珍. 高等植物赤霉素生物合成及其调节研究进展[J]. 植物学报, 2001, 18(03): 303-307. |
[11] | 宋平 周燮. 深水稻节间伸长生长的机制[J]. 植物学报, 2000, 17(01): 46-51. |
[12] | 马焕普 刘志民. 赤霉素与果树的生长发育[J]. 植物学报, 1998, 15(01): 27-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||