[1] |
Cox TS, Glover JD, Van Tassel DL, Cox CM, DeHaan LR (2006). Prospects for developing perennial grain crops. Bioscience 56, 649-659.
|
[2] |
Crews TE, Carton W, Olsson L (2018). Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Global Sust 1, e11.
|
[3] |
Friedman J (2020). The evolution of annual and perennial plant life histories: ecological correlates and genetic me- chanisms. Annu Rev Ecol Evol Syst 51, 461-481.
|
[4] |
Friedman J, Rubin MJ (2015). All in good time: understanding annual and perennial strategies in plants. Am J Bot 102, 497-499.
DOI
PMID
|
[5] |
Gao Z, He YH (2024). Molecular epigenetic understanding of winter memory in Arabidopsis. Plant Physiol 194, 1952-1961.
|
[6] |
Glover JD, Reganold JP, Bell LW, Borevitz J, Brummer EC, Buckler ES, Cox CM, Cox TS, Crews TE, Culman SW, DeHaan LR, Eriksson D, Gill BS, Holland J, Hu F, Hulke BS, Ibrahim AMH, Jackson W, Jones SS, Murray SC, Paterson AH, Ploschuk E, Sacks EJ, Snapp S, Tao D, Van Tassel DL, Wade LJ, Wyse DL, Xu Y (2010). Increased food and ecosystem security via perennial grains: perennial grains hold promise, especially for marginal landscapes or with limited resources where annual versions struggle. Science 328, 1638-1639.
DOI
PMID
|
[7] |
Hu FY, Tao DY, Sacks E, Fu BY, Xu P, Li J, Yang Y, McNally K, Khush GS, Paterson AH, Li ZK (2003). Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci USA 100, 4050-4054.
PMID
|
[8] |
Jackson W (1980). New Roots for Agriculture. Lincoln: University of Nebraska Press. pp. 93-115.
|
[9] |
Li Z, Lathe RS, Li JP, He H, Bhalerao RP (2022). Towards understanding the biological foundations of perenniality. Trends Plant Sci 27, 56-68.
|
[10] |
Luo X, He YH (2020). Experiencing winter for spring flo- wering: a molecular epigenetic perspective on vernalization. J Integr Plant Biol 62, 104-117.
|
[11] |
Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999). The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11, 445-458.
DOI
PMID
|
[12] |
Stearns SC, Fawcett TE (2013). Life-history theory: an o- verview. Annu Rev Ecol Evol Syst 44, 145-171.
|
[13] |
Tan FC, Swain SM (2006). Genetics of flower initiation and development in annual and perennial plants. Physiol Plant 128, 8-17.
|
[14] |
Xu SJ, Chong K (2018). Remembering winter through vernalisation. Nat Plants 4, 997-1009.
DOI
PMID
|
[15] |
Zhai D, Zhang LY, Li LZ, Xu ZG, Liu XL, Shang GD, Zhao B, Gao J, Wang FX, Wang JW (2024). Reciprocal conversion between annual and polycarpic perennial flowering behavior in the Brassicaceae. Cell Doi: 10.1016/j.cell.2024.04.047
|
[16] |
Zhang SL, Huang GF, Zhang YJ, Lv XT, Wan KJ, Liang J, Feng YP, Dao JR, Wu SK, Zhang L, Yang X, Lian XP, Huang LY, Shao L, Zhang J, Qin SW, Tao DY, Crews TE, Sacks EJ, Lyu J, Wade LJ, Hu FY (2023). Sustained productivity and agronomic potential of perennial rice. Nat Sustain 6, 28-38.
|
[17] |
Zhou CM, Zhang TQ, Wang X, Yu S, Lian H, Tang HB, Feng ZY, Zozomova-Lihová J, Wang JW (2013). Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 340, 1097-1100.
|