植物学报 ›› 2023, Vol. 58 ›› Issue (6): 1008-1018.DOI: 10.11983/CBB22208
• 专题论坛 • 上一篇
张标1,2, 吴健3, 张杨4, 董小卫4, 韩硕3, 高昕3, 杜从伍3, 李慧英3, 种学法3, 朱莹莹1, 刘海伟1,*()
收稿日期:
2022-08-31
接受日期:
2023-01-10
出版日期:
2023-11-01
发布日期:
2023-11-27
通讯作者:
* E-mail: heaveyliu@163.com
基金资助:
Biao Zhang1,2, Jian Wu3, Yang Zhang4, Xiaowei Dong4, Shuo Han3, Xin Gao3, Congwu Du3, Huiying Li3, Xuefa Chong3, Yingying Zhu1, Haiwei Liu1,*()
Received:
2022-08-31
Accepted:
2023-01-10
Online:
2023-11-01
Published:
2023-11-27
Contact:
* E-mail: heaveyliu@163.com
摘要: 植物的根可选择性地从土壤中吸收水分和养分, 并运输至地上部供植物生长发育所需, 这些功能与其解剖结构密切相关。根部吸收的水和溶质在根中的径向运输主要包括质外体、共质体和跨细胞3条途径。内皮层是包围中央维管系统的最内细胞层。长期以来, 内皮层分化形成的凯氏带被认为在阻断水和溶质通过质外体途径运输中发挥决定性作用。然而, 近年来, 研究发现内皮层分化形成的木栓层对水和溶质的径向运输作用不亚于凯氏带, 甚至称木栓化是内皮层细胞的第二次生命。该文综述了近年来木栓层在水和溶质运输中生理功能的最新进展, 阐述了木栓层与作物抗旱、抗盐、抗重金属和抗养分胁迫之间的关系, 以期为内皮层可塑性调控植物生理功能的理论和实践提供参考。
张标, 吴健, 张杨, 董小卫, 韩硕, 高昕, 杜从伍, 李慧英, 种学法, 朱莹莹, 刘海伟. 木栓层在水和溶质运输中的生理功能研究进展. 植物学报, 2023, 58(6): 1008-1018.
Biao Zhang, Jian Wu, Yang Zhang, Xiaowei Dong, Shuo Han, Xin Gao, Congwu Du, Huiying Li, Xuefa Chong, Yingying Zhu, Haiwei Liu. Research Progress on Physiological Functions of Suberin lamellae in Water and Solutes Transport. Chinese Bulletin of Botany, 2023, 58(6): 1008-1018.
图1 木栓层作为双向屏障的示意图(改自Barberon et al., 2016) 木栓层不仅阻断水和溶质进入根内部, 也防止其向外流失。
Figure 1 Schematic diagram of suberin lamellae acts as bi-directional barrier (modified from Barberon et al., 2016) Suberin lamellae not only blocks water and solute from entering the root, but also prevents them from flowing out.
图2 根部横切面示意图(改自Kim et al., 2018) 水和溶质通过3种途径进入中柱。根部吸收的水和溶质须通过表皮、外皮层、皮层及内皮层的径向运输才能到达中柱。外皮层、内皮层中的凯氏带(黄色点)和木栓层(紫色条)阻断了水与溶质向中柱的径向运输。
Figure 2 Schematic diagram of a root cross-section (modified from Kim et al., 2018) Water and solute transport into the stele through three path- ways. The water and solute absorbed by root must be transported radially through the rhizodermis, exodermis, cortex and endodermis to reach the stele. Casparian strips (yellow dots) and suberin lamellae (purple lines) in the exodermis and endodermis interrupt water and solute radial transport into the stele.
酶 | 物种 | 基因 | 参考文献 |
---|---|---|---|
β-酮酯酰-CoA合成酶 | 东南景天 | SaKCS20 | Tao et al., |
ZIP转运体 | 东南景天 | SaZIP1 | Tao et al., |
HMA转运体 | 东南景天 | SaHMA2 | Tao et al., |
东南景天 | SaHMA4 | Tao et al., | |
细胞色素P450 | 拟南芥 | AtCYP86A1/HORST | Wang et al., |
印度红树 | AoCYP94B1 | Krishnamurthy et al., | |
印度红树 | AoCYP94B3 | Krishnamurthy et al., | |
甘油-3-磷酸酰基转移酶 | 拟南芥 | AtGPAT5 | Hsu et al., |
东南景天 | SaGPAT5 | Tao et al., | |
类蛋白 | 拟南芥 | AtESB1 | Kreszies et al., |
GDSL型酯酶/脂肪酶 | 拟南芥 | AtGELP22 | Ursache et al., |
拟南芥 | AtGELP38 | Ursache et al., | |
拟南芥 | AtGELP49 | Ursache et al., | |
拟南芥 | AtGELP51 | Ursache et al., | |
拟南芥 | AtGELP96 | Ursache et al., | |
ATP结合盒式蛋白 | 拟南芥 | AtABCG1 | Shanmugarajah et al., |
拟南芥 | AtABCG2 | Shanmugarajah et al., | |
拟南芥 | AtABCG6 | Shanmugarajah et al., | |
拟南芥 | AtABCG20 | Shanmugarajah et al., | |
水稻 | OsRCN1/ABCG5 | Shiono et al., | |
脂质转运蛋白 | 拟南芥 | AtLTPI4 | Deeken et al., |
拟南芥 | AtLTPG15 | Lee and Suh, | |
MYB蛋白 | 拟南芥 | AtMYB41 | Shukla et al., |
拟南芥 | AtMYB107 | Gou et al., | |
拟南芥 | AtMYB9 | Lashbrooke et al., | |
拟南芥 | AtMYB39/SUBERMAN | Cohen et al., | |
拟南芥 | AtMYB53 | Shukla et al., | |
拟南芥 | AtMYB92 | Shukla et al., | |
拟南芥 | AtMYB93 | Shukla et al., | |
拟南芥 | AtMYB70 | Wan et al., |
表1 木栓质生物合成及其调控途径中具有功能特征的酶和基因
Table 1 List of enzymes and genes that were functionally characterized in the biosynthesis and regulation of suberin
酶 | 物种 | 基因 | 参考文献 |
---|---|---|---|
β-酮酯酰-CoA合成酶 | 东南景天 | SaKCS20 | Tao et al., |
ZIP转运体 | 东南景天 | SaZIP1 | Tao et al., |
HMA转运体 | 东南景天 | SaHMA2 | Tao et al., |
东南景天 | SaHMA4 | Tao et al., | |
细胞色素P450 | 拟南芥 | AtCYP86A1/HORST | Wang et al., |
印度红树 | AoCYP94B1 | Krishnamurthy et al., | |
印度红树 | AoCYP94B3 | Krishnamurthy et al., | |
甘油-3-磷酸酰基转移酶 | 拟南芥 | AtGPAT5 | Hsu et al., |
东南景天 | SaGPAT5 | Tao et al., | |
类蛋白 | 拟南芥 | AtESB1 | Kreszies et al., |
GDSL型酯酶/脂肪酶 | 拟南芥 | AtGELP22 | Ursache et al., |
拟南芥 | AtGELP38 | Ursache et al., | |
拟南芥 | AtGELP49 | Ursache et al., | |
拟南芥 | AtGELP51 | Ursache et al., | |
拟南芥 | AtGELP96 | Ursache et al., | |
ATP结合盒式蛋白 | 拟南芥 | AtABCG1 | Shanmugarajah et al., |
拟南芥 | AtABCG2 | Shanmugarajah et al., | |
拟南芥 | AtABCG6 | Shanmugarajah et al., | |
拟南芥 | AtABCG20 | Shanmugarajah et al., | |
水稻 | OsRCN1/ABCG5 | Shiono et al., | |
脂质转运蛋白 | 拟南芥 | AtLTPI4 | Deeken et al., |
拟南芥 | AtLTPG15 | Lee and Suh, | |
MYB蛋白 | 拟南芥 | AtMYB41 | Shukla et al., |
拟南芥 | AtMYB107 | Gou et al., | |
拟南芥 | AtMYB9 | Lashbrooke et al., | |
拟南芥 | AtMYB39/SUBERMAN | Cohen et al., | |
拟南芥 | AtMYB53 | Shukla et al., | |
拟南芥 | AtMYB92 | Shukla et al., | |
拟南芥 | AtMYB93 | Shukla et al., | |
拟南芥 | AtMYB70 | Wan et al., |
图3 木栓化与非生物和生物胁迫示意图(改自Barberon et al., 2016) 在非生物及生物胁迫下, 内皮层木栓化增强, 从而减轻非生物和生物胁迫对植物的伤害。
Figure 3 Schematic diagram of suberization and abiotic stress and biotic stress (modified from Barberon et al., 2016) Under abiotic stress and biotic stress, the suberization of endodermis can be enhanced, thus reducing the damage of abiotic stress and biotic stress to plants.
[1] |
韩雪源, 茅林春 (2017). 木栓质组成成分、组织化学特性及其生物合成研究进展. 植物学报 52, 358-374.
DOI |
[2] |
刘鑫, 王沛, 周青平 (2021). 植物根系质外体屏障研究进展. 植物学报 56, 761-773.
DOI |
[3] |
王璐瑶, 陈謇, 赵守清, 闫慧莉, 许文秀, 刘若溪, 麻密, 虞轶俊, 何振艳 (2022). 水稻镉积累特性的生理和分子机制研究概述. 植物学报 57, 236-249.
DOI |
[4] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 王小东, 梁文君, 李鹏程, 张俊莲, 白江平 (2021). 作物根构型相关基因研究进展及其在马铃薯抗旱种质创新中的应用展望. 植物生理学报 57, 1007-1022. |
[5] | 杨蔚, 罗小燕, 王文强, 严琳玲, 杨虎彪, 董荣书, 徐彬, 胡国富, 刘一明, 刘国道 (2022). 细胞壁在植物抗盐胁迫中的作用. 植物生理学报 58, 501-510. |
[6] | 张妍, 葛颜锐, 赵冉, 胡云涛, 陈羽, 郭亚玉, 林金星, 李瑞丽 (2022). 木栓质的结构组分、生物合成及其功能的研究进展. 科学通报 67, 822-833. |
[7] |
Alassimone J, Naseer S, Geldner N (2010). A develop-mental framework for endodermal differentiation and polarity. Proc Natl Acad Sci USA 107, 5214-5219.
DOI PMID |
[8] |
Andersen TG, Barberon M, Geldner N (2015). Suberiza-tion—the second life of an endodermal cell. Curr Opin Plant Biol 28, 9-15.
DOI PMID |
[9] |
Andersen TG, Naseer S, Ursache R, Wybouw B, Smet W, De Rybel B, Vermeer JEM, Geldner N (2018). Diffusible repression of cytokinin signaling produces endodermal symmetry and passage cells. Nature 555, 529-533.
DOI URL |
[10] | Armand T, Cullen M, Boiziot F, Li LY, Fricke W (2019). Cortex cell hydraulic conductivity, endodermal apoplastic barriers and root hydraulics change in barley (Hordeum vulgare L.) in response to a low supply of N and P. Ann Bot 124, 1091-1107. |
[11] |
Barberon M (2017). The endodermis as a checkpoint for nutrients. New Phytol 213, 1604-1610.
DOI PMID |
[12] |
Barberon M, Vermeer JEM, De Bellis D, Wang P, Naseer S, Andersen TG, Humbel BM, Nawrath C, Takano J, Salt DE, Geldner N (2016). Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164, 447-459.
DOI PMID |
[13] |
Barbosa ICR, Rojas-Murcia N, Geldner N (2019). The Casparian strip—one ring to bring cell biology to lignification? Curr Opin Biotechnol 56, 121-129.
DOI URL |
[14] |
Baxter I, Hosmani PS, Rus A, Lahner B, Borevitz JO, Muthukumar B, Mickelbart MV, Schreiber L, Franke RB, Salt DE (2009). Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet 5, e1000492.
DOI URL |
[15] |
Chen A, Liu T, Deng Y, Xiao R, Zhang T, Wang Y, Yang Y, Lakshmanan P, Shi X, Zhang F, Chen X (2023). Nitrate-dependent suberization regulates cadmium uptake and accumulation in maize. Sci Total Environ 878, 162848.
DOI URL |
[16] |
Chen AL, Husted S, Salt DE, Schjoerring JK, Persson DP (2019). The intensity of manganese deficiency strongly affects root endodermal suberization and ion homeostatsis. Plant Physiol 181, 729-742.
DOI URL |
[17] |
Chen HF, Zhang Q, Lv W, Yu XY, Zhang ZH (2022). Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice. Environ Pollut 302, 119063.
DOI URL |
[18] |
Cheng H, Inyang A, Li CD, Fei J, Zhou YW, Wang YS (2020). Salt tolerance and exclusion in the mangrove plant Avicennia marina in relation to root apoplastic barriers. Ecotoxicology 29, 676-683.
DOI PMID |
[19] |
Cohen H, Fedyuk V, Wang CH, Wu S, Aharoni A (2020). SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis. Plant J 102, 431-447.
DOI URL |
[20] |
Cortaga CQ, Sebidos RF (2019). Drought-induced modify-cations on the outer part of the root (OPR) and root endodermis of selected rice genotypes. J Crop Sci Biotechnol 22, 131-138.
DOI |
[21] |
Cui B, Liu RR, Flowers TJ, Song J (2021). Casparian bands and suberin lamellae: key targets for breeding salt tolerant crops? Environ Exp Bot 191, 104600.
DOI URL |
[22] |
de Silva NDG, Murmu J, Chabot D, Hubbard K, Ryser P, Molina I, Rowland O (2021). Root suberin plays important roles in reducing water loss and sodium uptake in Arabidopsis thaliana. Metabolites 11, 735.
DOI URL |
[23] |
Deeken R, Saupe S, Klinkenberg J, Riedel M, Leide J, Hedrich R, Mueller TD (2016). The nonspecific lipid transfer protein AtLtpI-4 is involved in suberin formation of Arabidopsis thaliana crown galls. Plant Physiol 172, 1911-1927.
DOI URL |
[24] |
Doblas VG, Geldner N, Barberon M (2017a). The endodermis, a tightly controlled barrier for nutrients. Curr Opin Plant Biol 39, 136-143.
DOI URL |
[25] |
Doblas VG, Smakowska-Luzan E, Fujita S, Alassimone J, Barberon M, Madalinski M, Belkhadir Y, Geldner N (2017b). Root diffusion barrier control by a vasculaturederived peptide binding to the SGN3 receptor. Science 355, 280-284.
DOI URL |
[26] |
Emonet A, Zhou F, Vacheron J, Heiman CM, Tendon VD, Ma KW, Schulze-Lefert P, Keel C, Geldner N (2021). Spatially restricted immune responses are required for maintaining root meristematic activity upon detection of bacteria. Curr Biol 31, 1012-1028.
DOI URL |
[27] |
Fröschel C, Komorek J, Attard A, Marsell A, Lopez-Arboleda WA, Le Berre J, Wolf E, Geldner N, Waller F, Korte A, Dröge-Laser W (2021). Plant roots employ cell- layer-specific programs to respond to pathogenic and beneficial microbes. Cell Host Microbe 29, 299-310.
DOI URL |
[28] |
Geldner N (2013). The endodermis. Annu Rev Plant Biol 64, 531-558.
DOI PMID |
[29] |
Gou MY, Hou GC, Yang HJ, Zhang XB, Cai YH, Kai GY, Liu CJ (2017). The MYB107 transcription factor positively regulates suberin biosynthesis. Plant Physiol 173, 1045-1058.
DOI PMID |
[30] |
Grünhofer P, Guo YY, Li RL, Lin JX, Schreiber L (2021). Hydroponic cultivation conditions allowing the reproducible investigation of poplar root suberization and water transport. Plant Methods 17, 129.
DOI PMID |
[31] |
Gupta A, Rico-Medina A, Caño-Delgado AI (2020). The physiology of plant responses to drought. Science 368, 266-269.
DOI PMID |
[32] |
Holbein J, Shen DF, Andersen TG (2021). The endodermal passage cell—just another brick in the wall? New Phytol 230, 1321-1328.
DOI PMID |
[33] |
Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE (2013). Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based casparian strip in the root. Proc Natl Acad Sci USA 110, 14498-14503.
DOI PMID |
[34] |
Hsu YF, Yan JW, Song Y, Zheng M (2021). Sarracenia purpurea glycerol-3-phosphate acyltransferase 5 confers plant tolerance to high humidity in Arabidopsis thaliana. Physiol Plant 173, 1221-1229.
DOI URL |
[35] |
Huang L, Li WC, Tam NFY, Ye ZH (2019). Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.). J Environ Sci 75, 296-306.
DOI URL |
[36] | Kim G, Ryu H, Sung J (2022). Hormonal crosstalk and root suberization for drought stress tolerance in plants. Biomolecules 12, 811. |
[37] |
Kim YX, Ranathunge K, Lee S, Lee Y, Lee D, Sung J (2018). Composite transport model and water and solute transport across plant roots: an update. Front Plant Sci 9, 193.
DOI PMID |
[38] |
Knipfer T, Danjou M, Vionne C, Fricke W (2021). Salt stress reduces root water uptake in barley (Hordeum vulgare L.) through modification of the transcellular transport path. Plant Cell Environ 44, 458-475.
DOI URL |
[39] |
Kreszies T, Eggels S, Kreszies V, Osthoff A, Shellakkutti N, Baldauf JA, Zeisler-Diehl VV, Hochholdinger F, Ranathunge K, Schreiber L (2020a). Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant Cell Environ 43, 344-357.
DOI URL |
[40] |
Kreszies T, Kreszies V, Ly F, Thangamani PD, Shellak-kutti N, Schreiber L (2020b). Suberized transport barriers in plant roots: the effect of silicon. J Exp Bot 71, 6799-6806.
DOI URL |
[41] |
Kreszies T, Schreiber L, Ranathunge K (2018). Suberized transport barriers in Arabidopsis, barley and rice roots: from the model plant to crop species. J Plant Physiol 227, 75-83.
DOI URL |
[42] |
Kreszies T, Shellakkutti N, Osthoff A, Yu P, Baldauf JA, Zeisler-Diehl VV, Ranathunge K, Hochholdinger F, Schreiber L (2019). Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytol 221, 180-194.
DOI PMID |
[43] |
Krishnamurthy P, Ranathunge K, Franke R, Prakash HS, Schreiber L, Mathew MK (2009). The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sa-tiva L.). Planta 230, 119-134.
DOI PMID |
[44] |
Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew MK (2011). Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). J Exp Bot 62, 4215-4228.
DOI PMID |
[45] |
Krishnamurthy P, Vishal B, Bhal A, Kumar PP (2021). WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis. Physiol Plant 172, 1673-1687.
DOI PMID |
[46] |
Krishnamurthy P, Vishal B, Ho WJ, Lok FCJ, Lee FSM, Kumar PP (2020). Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance. Plant Physiol 184, 2199-2215.
DOI PMID |
[47] |
Lashbrooke J, Cohen H, Levy-Samocha D, Tzfadia O, Panizel I, Zeisler V, Massalha H, Stern A, Trainotti L, Schreiber L, Costa F, Aharoni A (2016). MYB107 and MYB9 homologs regulate suberin deposition in angiosperms. Plant Cell 28, 2097-2116.
DOI URL |
[48] |
Lee SB, Suh MC (2018). Disruption of glycosylphosphatidy-linositol-anchored lipid transfer protein 15 affects seed coat permeability in Arabidopsis. Plant J 96, 1206-1217.
DOI URL |
[49] |
Líška D, Martinka M, Kohanová J, Lux A (2016). Asymme-trical development of root endodermis and exodermis in reaction to abiotic stresses. Ann Bot 118, 667-674.
DOI URL |
[50] |
Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015). Aquaporins in plants. Physiol Rev 95, 1321-1358.
DOI PMID |
[51] |
Melino VJ, Plett DC, Bendre P, Thomsen HC, Zeisler- Diehl VV, Schreiber L, Kronzucker HJ (2021). Nitrogen depletion enhances endodermal suberization without restricting transporter-mediated root NO3- influx. J Plant Physiol 257, 153334.
DOI URL |
[52] |
Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N (2012). Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci USA 109, 10101-10106.
DOI PMID |
[53] |
Pfister A, Barberon M, Alassimone J, Kalmbach L, Lee Y, Vermeer JEM, Yamazaki M, Li GW, Maurel C, Takano J, Kamiya T, Salt DE, Roppolo D, Geldner N (2014). A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. eLife 3, e03115.
DOI URL |
[54] |
Ranathunge K, Schreiber L (2011). Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. J Exp Bot 62, 1961-1974.
DOI PMID |
[55] |
Ranathunge K, Schreiber L, Bi YM, Rothstein SJ (2016). Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots. Planta 243, 231-249.
DOI PMID |
[56] |
Ranathunge K, Schreiber L, Franke R (2011). Suberin research in the genomics era—new interest for an old polymer. Plant Sci 180, 399-413.
DOI PMID |
[57] |
Redjala T, Zelko I, Sterckeman T, Legué V, Lux A (2011). Relationship between root structure and root cadmium uptake in maize. Environ Exp Bot 71, 241-248.
DOI URL |
[58] |
Salas-González I, Reyt G, Flis P, Custódio V, Gopaulc-han D, Bakhoum N, Dew TP, Suresh K, Franke RB, Dangl JL, Salt DE, Castrillo G (2021). Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695.
DOI URL |
[59] |
Shanmugarajah K, Linka N, Gräfe K, Smits SHJ, Weber APM, Zeier J, Schmitt L (2019). ABCG1 contributes to suberin formation in Arabidopsis thaliana roots. Sci Rep 9, 11381.
DOI PMID |
[60] |
Shiono K, Ando M, Nishiuchi S, Takahashi H, Watanabe K, Nakamura M, Matsuo Y, Yasuno N, Yamanouchi U, Fujimoto M, Takanashi H, Ranathunge K, Franke RB, Shitan N, Nishizawa NK, Takamure I, Yano M, Tsutsumi N, Schreiber L, Yazaki K, Nakazono M, Kato K (2014). RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Plant J 80, 40-51.
DOI URL |
[61] |
Shukla V, Barberon M (2021). Building and breaking of a barrier: suberin plasticity and function in the endodermis. Curr Opin Plant Biol 64, 102153.
DOI URL |
[62] | Shukla V, Han JP, Cléard F, Lefebvre-Legendre L, Gully K, Flis P, Berhin A, Andersen TG, Salt DE, Nawrath C, Barberon M (2021). Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transc-a)ription factors. Proc Natl Acad Sci USA 118, e21017301-18. |
[63] |
Tao Q, Jupa R, Liu YK, Luo JP, Li JX, Kováč J, Li B, Li QQ, Wu KR, Liang YC, Lux A, Wang CQ, Li TQ (2019). Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii. Plant Cell Environ 42, 1425-1440.
DOI |
[64] |
Tao Q, Li M, Xu Q, Kováč J, Yuan S, Li B, Li QQ, Huang R, Gao XS, Wang CQ (2022). Radial transport difference mediated by root endodermal barriers contributes to differential cadmium accumulation between japonica and indica subspecies of rice (Oryza sativa L.). J Hazard Mater 425, 128008.
DOI URL |
[65] |
Ursache R, De Jesus Vieira Teixeira C, Tendon VD, Gully K, De Bellis D, Schmid-Siegert E, Andersen TG, Shekhar V, Calderon S, Pradervand S, Nawrath C, Geldner N, Vermeer JEM (2021). GDSL-domain proteins have key roles in suberin polymerization and degradation. Nat Plants 7, 353-364.
DOI PMID |
[66] | Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Lux A, Hauser MT (2012). Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environ Pollut 163, 117-126. |
[67] | Wan JP, Wang RL, Zhang P, Sun LL, Ju Q, Huang HD, Lü SY, Tran LS, Xu J (2021). MYB70 modulates seed germination and root system development in Arabidopsis. iS-cience 24, 103228. |
[68] |
Wang P, Calvo-Polanco M, Reyt G, Barberon M, Cham-peyroux C, Santoni V, Maurel C, Franke RB, Ljung K, Novak O, Geldner N, Boursiac Y, Salt DE (2019). Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Sci Rep 9, 4227.
DOI |
[69] |
Wang P, Wang CM, Gao L, Cui YN, Yang HL, de Silva NDG, Ma Q, Bao AK, Flowers TJ, Rowland O, Wang SM (2020). Aliphatic suberin confers salt tolerance to Arabidopsis by limiting Na+influx, K+ efflux and water backflow. Plant Soil 448, 603-620.
DOI |
[70] |
Zhang L, Merlin I, Pascal S, Bert PF, Domergue F, Gam-betta GA (2020). Drought activates MYB41 orthologs and induces suberization of grapevine fine roots. Plant Direct 4, e00278.
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[5] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[6] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[7] | 李宇琛, 赵海霞, 姜希萍, 黄馨田, 刘亚玲, 吴振映, 赵彦, 付春祥. 根癌农杆菌介导的蒙古冰草稳定遗传转化体系的建立[J]. 植物学报, 2024, 59(4): 0-0. |
[8] | 田旭平, 岳康杰, 王佳丽, 刘慧欣, 史子尹, 亢红伟. 毛建草愈伤组织诱导及植株再生[J]. 植物学报, 2024, 59(4): 0-0. |
[9] | 刘笑, 杜琬莹, 张云秀, 唐成名, 李华伟, 夏海勇, 樊守金, 孔令安. NO3-缓解小麦根部NH4+毒性机理[J]. 植物学报, 2024, 59(3): 397-413. |
[10] | 康敏, 张美莹, 齐秀双, 佟宁宁, 李旸, 舒庆艳, 刘政安, 吕长平, 彭丽平. 伊藤杂种‘和谐’组培快繁体系的建立[J]. 植物学报, 2024, 59(3): 441-451. |
[11] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[12] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[13] | 陈佳欣, 梅浩, 黄彩翔, 梁宗原, 全依桐, 李东鹏, 布威麦尔耶姆·赛麦提, 李欣欣, 廖红. 利用转基因毛状根高效培育大豆嵌合植株的方法[J]. 植物学报, 2024, 59(1): 89-98. |
[14] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[15] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||