植物学报 ›› 2018, Vol. 53 ›› Issue (1): 72-81.DOI: 10.11983/CBB17004
许馨露, 李丹丹, 马元丹*(), 翟建云, 孙建飞, 高岩, 张汝民
收稿日期:
2017-01-06
接受日期:
2017-05-04
出版日期:
2018-01-01
发布日期:
2018-08-10
通讯作者:
马元丹
基金资助:
Xinlu Xu, Dandan Li, Yuandan Ma*(), Jianyun Zhai, Jianfei Sun, Yan Gao, Rumin Zhang
Received:
2017-01-06
Accepted:
2017-05-04
Online:
2018-01-01
Published:
2018-08-10
Contact:
Yuandan Ma
摘要: 以天香台阁四季桂(Osmanthus fragrans cv. ‘Tian Xiang TaiGe’)为材料, 研究干旱(轻度、中度和重度)、高温(40°C)及干旱高温协同胁迫对四季桂叶片抗氧化防御系统的影响。结果显示, 干旱胁迫下, 四季桂活性氧(ROS)逐渐积累, 膜脂过氧化程度加深; 轻度和中度干旱胁迫下, 抗氧化酶活性显著升高; 重度干旱胁迫下, 抗坏血酸(AsA)及其还原力(AsA/DHA)显著降低, 谷胱甘肽(GSH)及其还原力(GSH/GSSG)以及抗坏血酸-谷胱甘肽(AsA-GSH)循环相关酶活性呈先上升后下降的趋势, 在中度干旱胁迫时达到峰值。高温胁迫显著增强ROS积累、抗氧化酶活性、抗氧化剂含量及AsA-GSH循环效率。干旱高温协同胁迫下, 四季桂所受伤害大于单一胁迫, ROS在抗氧化酶的作用下增幅减缓; 随着胁迫强度的加剧, AsA-GSH循环效率呈先增加后下降的趋势, 重度协同胁迫时显著降低, 无法维持氧化还原平衡。四季桂在干旱高温胁迫下能快速启动体内抗氧化防御系统, 清除体内过量的ROS, 增加机体还原力, 以减缓胁迫带来的伤害。
许馨露, 李丹丹, 马元丹, 翟建云, 孙建飞, 高岩, 张汝民. 四季桂抗氧化防御系统对干旱、高温及协同胁迫的响应. 植物学报, 2018, 53(1): 72-81.
Xinlu Xu, Dandan Li, Yuandan Ma, Jianyun Zhai, Jianfei Sun, Yan Gao, Rumin Zhang. Responses of the Antioxidant Defense System of Osmanthus fragrans cv. ‘Tian Xiang TaiGe’ to Drought, Heat and the Synergistic Stress. Chinese Bulletin of Botany, 2018, 53(1): 72-81.
Temperature | Treatment intensity | O2-· (nmol·g-1 FW) | H2O2 (μmol·g-1 FW) | MDA (μmol·g-1 FW) |
---|---|---|---|---|
28°C | CK | 7.56±0.77 C | 20.11±1.01 D | 4.09±0.64 C |
Light drought | 14.04±0.44 B | 33.08±2.33 C | 7.42±1.32 B | |
Moderate drought | 15.49±0.45 B | 40.60±2.30 B | 14.29±2.55 A | |
Heavy drought | 18.84±2.05 A | 49.24±1.74 A | 15.39±1.69 A | |
Sum of squares | Between groups (d.f.1=3) | 402.69 | 2743.44 | 532.18 |
Within groups (d.f.2=20) | 25.94 | 73.89 | 57.58 | |
40°C | CK | 10.92±0.81 b | 26.52±0.51 c | 9.14±0.67 b |
Light drought | 12.79±0.78 a | 37.52±3.73 b | 14.11±1.51 a | |
Moderate drought | 11.92±0.64 ab | 45.60±0.92 a | 16.36±2.29 a | |
Heavy drought | 11.30±1.69 ab | 34.64±4.18 b | 8.48±1.74 b | |
Sum of squares | Between groups (d.f.1=3) | 11.98 | 1117.58 | 264.48 |
Within groups (d.f.2=20) | 22.59 | 162.38 | 55.13 | |
P: Ft | ** | ns | ** | |
P: Fd | ** | ** | * | |
P: Ft×Fd | ** | ** | ** |
表1 干旱高温胁迫对天香台阁四季桂活性氧和丙二醛含量的影响
Table 1 Effect of drought and heat stress on reactive oxygen species and malondialdehyde (MDA) content in Osmanthus fragrans cv. ‘Tian Xiang TaiGe’
Temperature | Treatment intensity | O2-· (nmol·g-1 FW) | H2O2 (μmol·g-1 FW) | MDA (μmol·g-1 FW) |
---|---|---|---|---|
28°C | CK | 7.56±0.77 C | 20.11±1.01 D | 4.09±0.64 C |
Light drought | 14.04±0.44 B | 33.08±2.33 C | 7.42±1.32 B | |
Moderate drought | 15.49±0.45 B | 40.60±2.30 B | 14.29±2.55 A | |
Heavy drought | 18.84±2.05 A | 49.24±1.74 A | 15.39±1.69 A | |
Sum of squares | Between groups (d.f.1=3) | 402.69 | 2743.44 | 532.18 |
Within groups (d.f.2=20) | 25.94 | 73.89 | 57.58 | |
40°C | CK | 10.92±0.81 b | 26.52±0.51 c | 9.14±0.67 b |
Light drought | 12.79±0.78 a | 37.52±3.73 b | 14.11±1.51 a | |
Moderate drought | 11.92±0.64 ab | 45.60±0.92 a | 16.36±2.29 a | |
Heavy drought | 11.30±1.69 ab | 34.64±4.18 b | 8.48±1.74 b | |
Sum of squares | Between groups (d.f.1=3) | 11.98 | 1117.58 | 264.48 |
Within groups (d.f.2=20) | 22.59 | 162.38 | 55.13 | |
P: Ft | ** | ns | ** | |
P: Fd | ** | ** | * | |
P: Ft×Fd | ** | ** | ** |
图1 干旱高温胁迫对天香台阁四季桂抗氧化酶活性的影响(A) 超氧化物歧化酶(SOD)活性; (B) 过氧化物酶(POD)活性; (C) 过氧化氢酶(CAT)活性。Ft: 不同温度的影响; Fd: 不同处理强度的影响; Ft×Fd: 植物组织对干旱高温胁迫的不同响应。每个数值为平均值±标准误(n=6)。不同大写字母表示不同干旱处理间差异显著, 不同小写字母表示不同高温处理间差异显著。根据Tukey多重比较, * P<0.05; ** P<0.01; ns: 不显著
Figure 1 The effect of drought and heat stress on the activity of antioxidant enzymes in Osmanthus fragrans cv. ‘Tian Xiang TaiGe’(A) Superoxide dismutase (SOD) activity; (B) Peroxidase (POD) activity; (C) Catalase (CAT) activity. Ft: Effect of different temperature; Fd: Effect of different drought treatment intensity; Ft×Fd: Different responses of plant tissues to drought and heat stress. Each value is the mean±SE (n=6). Different capital letters indicate statistically significant differences of drought stress, different lowercase letters indicate statistically significant differences of heat stress. According to Tukey test, * P<0.05; ** P<0.01; ns: Non-significant
图2 干旱高温胁迫对天香台阁四季桂抗坏血酸含量的影响(A) 抗坏血酸(AsA)含量; (B) 脱氢抗坏血酸(DHA)含量; (C) AsA/DHA。Ft: 不同温度的影响; Fd: 不同处理强度的影响; Ft×Fd: 植物组织对干旱高温胁迫的不同响应。每个数值为平均值±标准误(n=6)。不同大写字母表示不同干旱处理间差异显著, 不同小写字母表示不同高温处理间差异显著。根据Tukey多重比较, * P<0.05; ** P<0.01; ns: 不显著
Figure 2 The effect of drought and heat stress on the AsA content in Osmanthus fragrans cv. ‘Tian Xiang TaiGe’ (A) Ascorbic acid (AsA) content; (B) Dehydroascorbate (DHA) content; (C) AsA/DHA. Ft: Effect of different temperature; Fd: Effect of different drought treatment intensity; Ft×Fd: Different responses of plant tissues to drought and heat stress. Each value is the mean±SE (n=6). Different capital letters indicate statistically significant differences of drought stress, different lowercase letters indicate statistically significant differences of heat stress. According to Tukey test, * P<0.05; ** P<0.01; ns: Non-significant
图3 干旱高温胁迫对天香台阁四季桂谷胱甘肽含量的影响(A) 谷胱甘肽(GSH)含量; (B) 氧化型谷胱甘肽(GSSG)含量; (C) GSH/GSSG。Ft: 不同温度的影响; Fd: 不同处理强度的影响; Ft×Fd: 植物组织对干旱高温胁迫的不同响应。每个数值为平均值±标准误(n=6)。不同大写字母表示不同干旱处理间差异显著, 不同小写字母表示不同高温处理间差异显著。根据Tukey多重比较, * P<0.05; ** P<0.01; ns: 不显著
Figure 3 The effect of drought and heat stress on the GSH content in Osmanthus fragrans cv. ‘Tian Xiang TaiGe’ (A) Glutathione (GSH) content; (B) Oxidized glutathione (GSSG) content; (C) GSH/GSSG. Ft: Effect of different temperature; Fd: Effect of different drought treatment intensity; Ft×Fd: Different responses of plant tissues to drought and heat stress. Each value is the mean±SE (n=6). Different capi- tal letters indicate statistically significant differences of drought stress, different lowercase letters indicate statistically significant differences of heat stress. According to Tukey test, * P<0.05; ** P<0.01; ns: Non-significant
图4 干旱高温胁迫对天香台阁四季桂AsA-GSH循环相关酶活性的影响(A) 抗坏血酸过氧化物酶(APX)活性; (B) 脱氢抗坏血酸还原酶(DHAR)活性; (C) 单脱氢抗坏血酸还原酶(MDHAR)活性; (D) 谷胱甘肽还原酶(GR)活性。Ft: 不同温度的影响; Fd: 不同处理强度的影响; Ft×Fd: 植物组织对干旱高温胁迫的不同响应。每个数值为平均值±标准误(n=6)。不同大写字母表示不同干旱处理间差异显著, 不同小写字母表示不同高温处理间差异显著。根据Tukey多重比较, * P<0.05; ** P<0.01; ns: 不显著
Figure 4 The effect of drought and heat stress on the enzymes activity of AsA-GSH cycle in Osmanthus fragrans cv. ‘Tian Xiang TaiGe’ (A) Ascorbate peroxidase (APX) activity; (B) Dehydroascorbate reductase (DHAR) activity; (C) Monodehydroascobate reductase (MDHAR) activity; (D) Glutathione reductase (GR) activity. Ft: Effect of different temperature; Fd: Effect of different drought treatment intensity; Ft×Fd: Different responses of plant tissues to drought and heat stress. Each value is the mean±SE (n=6). Different capital letters indicate statistically significant differences of drought stress, different lowercase letters indicate statistically significant differences of heat stress. According to Tukey test, * P<0.05; ** P<0.01; ns: Non- significant
[1] | 陈晓峰, 江洪, 牛晓栋, 张金梦, 刘玉莉, 方成圆 (2016). 季节性高温和干旱对亚热带毛竹林碳通量的影响. 应用生态学报 27, 335-344. |
[2] | 李忠光, 龚明 (2005). 植物中超氧阴离子自由基测定方法的改进. 云南植物研究 27, 211-216. |
[3] | 吴永波, 叶波 (2016). 高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响. 生态学报 36, 403-410. |
[4] | 谢华英, 马均, 代邹, 李玥, 孙加威, 赵建红, 徐徽, 孙永健 (2016). 抽穗期高温干旱胁迫对杂交水稻产量及生理特性的影响. 杂交水稻 31, 62-69. |
[5] | Arab L, Kreuzwieser J, Kruse J, Zimmer I, Ache P, Alfarraj S, Al-rasheid KAS, Schnitzler JP, Hedrich R, Rennenberg H (2016). Acclimation to heat and drought- lessons to learn from the date palm ( Phoenix dactylifera). Environ Exp Bot 125, 20-30. |
[6] | Doulis AG, Debian N, Kingston-Smith AH, Foyer CH (1997). Differential localization of antioxidants in maize leaves.Plant Physiol 114, 1031-1037. |
[7] | Foyer CH, Noctor G (2011). Ascorbate and glutathione: the heart of the redox hub.Plant Physiol 155, 2-18. |
[8] | Giannopolitis CN, Ries SK (1977). Superoxide dismutases: I. Occurrence in higher plants.Plant Physiol 59, 309-314. |
[9] | Hijioka Y, Lin E, Pereira J, Corlett R, Cui X, Insarov G, Lasco R, Lindgren E, Surjan A (2014).Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part B: Regional Aspects, Contribution of Working Group II, Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. pp.1327-1370. |
[10] | Hodges DM, Delong JM, Forney CF, Prange RK (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds.Pl- anta 207, 604-611. |
[11] | Hossain MA, Nakano Y, Asada K (1984). Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide.Plant Cell Physiol 25, 385-395. |
[12] | Imahori Y, Takemura M, Bai JH (2008). Chilling-induced oxidative stress and antioxidant responses in mume ( Pru- nus mume) fruit during low temperature storage. Postharvest Biol Technol 49, 54-60. |
[13] | Kumari GJ, Reddy AM, Naik ST, Kumar SG, Prasanthi J, Sriranganayakulu G, Reddy PC, Sudhakar C (2006). Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings.Biol Plant 50, 219-226. |
[14] | Lei P, Xu ZQ, Ding Y, Tang B, Zhang YX, Li HS, Feng XH, Xu H (2015). Effect of poly (γ-glutamic acid) on the physiological responses and calcium signaling of rape seedlings ( Brassica napus L.) under cold stress. J Agric Food Chem 63, 10399-10406. |
[15] | Lei P, Xu ZQ, Liang JF, Luo XH, Zhang YX, Feng XH, Xu H (2016). Poly (γ-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L. Plant Growth Regul 78, 233-241. |
[16] | Li H, Xu HL, Zhang PJ, Gao MQ, Wang D, Zhao HJ (2017). High temperature effects on D1 protein turnover in three wheat varieties with different heat susceptibility.Plant Grow- th Regul 78, 1-9. |
[17] | Liu CC, Liu YG, Guo K, Fan DY, Li GQ, Zheng YR, Yu LF, Yang R (2011). Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China.Environ Exp Bot 71, 174-183. |
[18] | Ma YH, Ma FW, Wang YH, Zhang JK (2011). The responses of the enzymes related with ascorbate-gluta- thione cycle during drought stress in apple leaves.Acta Physiol Plant 33, 173-180. |
[19] | Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015). Exogenous glutathione confers high temperature stress tolerance in mung bean ( Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112, 44-54. |
[20] | Nakano Y, Asada K (1981). Hydrogen peroxide is scaven- ged by ascorbate-specific peroxidase in spinach chloroplasts.Plant Cell Physiol 22, 867-880. |
[21] | Rai AC, Singh M, Shah K (2012). Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiol Biochem 61, 108-114. |
[22] | Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003). Fingerprints of global warming on wild animals and plants.Nature 421, 57-60. |
[23] | Schaedle M, Bassham JA (1977). Chloroplast glutathione reductase.Plant Physiol 59, 1011-1012. |
[24] | Sharma P, Jha AB, Dubey RS, Pessarakli M (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.J Bot 2012, 217037. |
[25] | Silva EN, Ferreira-Silva SL, Fontenele ADV, Ribeiro RV, Viégasc RA, Silveira JAG (2010). Photosynthetic chan- ges and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J Plant Physiol 167, 1157-1164. |
[26] | Suzuki N, Koussevitzky S, Mittler R, Miller G (2012). ROS and redox signaling in the response of plants to abiotic stress.Plant Cell Environ 35, 259-270. |
[27] | Wang SC, Liang D, Li C, Hao Yl, Ma FW, Shu HR (2012). Influence of drought stress on the cellular ultrastructure and antioxidant systemin leaves of drought-tolerant and drought-sensitive apple rootstocks.Plant Physiol Biochem 51, 81-89. |
[28] | Wu XX, He J, Ding HD, Zhu ZW, Chen JL, Xu S, Zha DS (2015). Modulation of zinc-induced oxidative damage in Solanum melongena by 6-benzylaminopurine involves ascorbate-glutathione cyclemetabolism. Environ Exp Bot 116, 1-11. |
[29] | Zou MQ, Yuan LY, Zhu SD, Liu S, Ge JT, Wang CG (2016). Response of osmotic adjustment and ascorbate-glutathione cycle to heat stress in a heat-sensitive and a heat-tolerant genotype of wucai ( Brassica campestris L.). Sci Hortic 211, 87-94. |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 赵来鹏, 王柏柯, 杨涛, 李宁, 杨海涛, 王娟, 闫会转. SlHVA22l基因调节番茄耐旱性研究[J]. 植物学报, 2024, 59(4): 0-0. |
[3] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[4] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[5] | 张悦婧, 桑鹤天, 王涵琦, 石珍珍, 李丽, 王馨, 孙坤, 张继, 冯汉青. 植物对非生物胁迫系统性反应中信号传递的研究进展[J]. 植物学报, 2024, 59(1): 122-133. |
[6] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[7] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[8] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[9] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43介导甘蓝型油菜响应干旱胁迫[J]. 植物学报, 2023, 58(5): 701-711. |
[10] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[11] | 孙永江, 王琪, 邵琪雯, 辛智鸣, 肖辉杰, 程瑾. 高温胁迫对植物光合作用的影响研究进展[J]. 植物学报, 2023, 58(3): 486-498. |
[12] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[13] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
[14] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[15] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||