Chin Bull Bot ›› 2018, Vol. 53 ›› Issue (3): 305-312.doi: 10.11983/CBB18027

Special Issue: Medicinal Plant

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Genetic Relationship of Physalis Plants Revealed by Simple Sequence Repeat Markers

Zhu Yujia1, Jiao Kaili1, Luo Xiujun1, Feng Shangguo1,2,*(), Wang Huizhong1,2,*()   

  1. 1Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
    2College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, China;
  • Received:2018-01-28 Accepted:2018-05-09 Online:2018-06-05 Published:2018-05-01
  • Contact: Feng Shangguo,Wang Huizhong E-mail:shangguo007@126.com;whz62@163.com

Abstract:

In recent years, Physalis plants have attracted increasing attention worldwide due to their high nutritional value, edible fruit, and potential medicinal value. In this study, simple sequence repeat (SSR) markers were used to assess genetic relationships with 22 samples of four Physalis species mainly distributed in China. Twenty SSR primer pairs produced 118 loci, 90.7% (107) of which showed polymorphism. The average interspecies similarity coefficient was 0.501, which indicates a degree of genetic relationship among Physalis species. The results of UPGMA dendrography and PCoA plotting were similar, and all Physalis samples were grouped into two clusters. All P. alkekengi var. francheti samples, distant from any other Physalis species, constituted a separate cluster, which confirmed findings of previous studies. This study also indicated that SSR markers are rich in genetic information and could be used to assess the genetic diversity of Physalis species which provides rich useful information for protecting the Physalis germplasm resource and an important foundation for molecular assisted-breeding programs with Physalis.

Key words: Physalis, genetic relationship, SSR markers

Table 1

Twenty-two Physalis samples tested in this experiment"

No. Species name Code Origin
1 Physalis minima XSJ1 Qianxi, Tangshan, Hebei
2 P. minima XSJ2 Mudan, Heze, Shandong
3 P. minima XSJ3 Lou’an, Anhui
4 P. minima XSJ4 Lishui, Zhejiang
5 P. angulata KZ1 Jianggan, Hangzhou, Zhejiang
6 P. angulata KZ2 Xiaoshan, Hangzhou, Zhejiang
7 P. angulata KZ3 Luotian, Huanggang, Hubei
8 P. angulata KZ4 Honghe, Yunnan
9 P. angulata KZ5 Najing, Jiangsu
10 P. angulata KZ6 Linhai, Taizhou, Zhejiang
11 P. angulata KZ7 Wenzhou, Zhejiang
12 P. angulata KZ8 Pujiang, Jinhua, Zhejiang
13 P. angulata KZ9 Xiajin, Dezhou, Shandong
14 P. alkekengi var. francheti SJ1 Faku, Shenyang, Liaoning
15 P. alkekengi var. francheti SJ2 Donggang, Dandong, Liaoning
16 P. alkekengi var. francheti SJ3 Nong’an, Changchun, Jilin
17 P. alkekengi var. francheti SJ4 Zoucheng, Jinan, Shandong
18 P. pubescens MSJ1 Faku, Shenyang, Liaoning
19 P. pubescens MSJ2 Nong’an, Changchun, Jilin
20 P. pubescens MSJ3 Chaoyang, Zhaodong, Heilongjiang
21 P. pubescens MSJ4 Mudanjiang, Heilongjiang
22 P. pubescens MSJ5 Hulunbeir, Inner Mongolia

Table 2

Amplification results and polymorphism information of 20 simple sequence repeats (SSR) primer pairs"

Primer name Primer sequence (5'-3') Repeat
type
Tm No. of
loci
Polymorphic
loci
Polymorphism
rate (%)
SSR2 F: CATTGGGTTTCGCATCCAT AG 60 6 6 100.0
R: AGACAAGCCTAGGGGAAAGG
SSR9 F: TGCTCCGAGTTTTAGGGTTC AG 60 8 7 87.5
R: GCAGTTGGTAAAGTTGAGAGACG
SSR10 F: GCTTCCTATTGTGTTGCCTGA AT 58 5 4 80.0
R: ACTTTGGGTTTCGGGAATTG
SSR11 F: CAGCTGAAATAAGAGAGTGATTGG AG 57 4 3 75.0
R: CCCTCTTTTTCTCCTCCGAGT
SSR13 F: GCGGAATCCATTGTTTTTCA AC 58 9 8 88.9
R: CCGATGGAGTATAGTCACGCAAA
SSR15 F: GCTTGTTGATCAGCTTTCTTTG AT 57 7 6 85.7
R: TGGATCATAACCTTGCTAATGC
SSR36 F: ATGAACCACATGTCGGAGGA AG 58 7 6 85.7
R: GGGGATCCAAACGAAGTGTA
SSR54 F: CGGCTGGTATGCTTACAAAGAT AC 58 4 4 100.0
R: GCACTTCCACTGTTTTTAACTTCC
SSR55 F: CACCTACATAGGCAGCCAAAA AG 58 7 6 85.7
R: ATTTGTGGGCGGAGGAAG
SSR57 F: AGTGAAAAGCAGCCCATTCT AT 56 9 8 88.9
R: GGCGAAGCTGAATTGAAAAA
SSR67 F: GCTTCTGTTCCATTATTCACCA AG 56 5 5 100.0
R: GCAGTGTGGGATCAATCAAT
SSR68 F: GAAGCAAACAACTACACCCAAA AG 56 8 8 100.0
R: AAGCCTCGGATTTCATAGCA
SSR77 F: CATACCATAACTCCCCATCTCTC AG 57 4 3 75.0
R: TGCCGATTCTGATTTCTTCC
SSR92 F: TGGTTTGAGGATCAAGAAAGAA AAG 56 5 4 80.0
R: GTGGTATCAACGCAGAGTGG
SSR107 F: CATCCAACACCAGAAATACGC AAG 58 4 4 100.0
R: TCCAACTTTATCATTTCTTCCAC
SSR110 F: CACCCATATCCCAATCTTCTTC CTT 60 4 4 100.0
R: GGGTAATTTTCACGGGGAAT
SSR112 F: CTACGCCTACCACTTGCACA TCT 60 11 11 100.0
R: CAGTGGAAGCCTCAAGATCC
SSR118 F: AATCAAGGGTCAGAAGAAATGG ATC 58 2 2 100.0
R: GCAAGAATGGATGTGGGTGT
SSR123 F: TCAGTGGAGCGCGTATATCT ATC 60 5 5 100.0
R: GCGATCTCACCAAACCTCTC
SSR127 F: TTGGTTTGGCATAACTGCAA AAT 58 4 3 75.0
R: GGTTTGCAACTCTCATGCTG
Average - - - 5.9 5.4 90.4
Total - - - 118 107 -

Figure 1

Amplification profile of primer SSR55 (A) and SSR112 (B) in Physalis samplesM: DNA molecular standards. Lane 1-22: The 22 Physalis samples (sample number is the same as in Table 1)."

Table 3

Average interspecies genetic similarity coefficient in Physalis samples"

Measurement Similarity
coefficient
Average interspecies genetic similarity
coefficient
0.501±0.074
P. angulata vs P. minima 0.600±0.042
P. alkekengi var. francheti vs P. minima 0.437±0.036
P. pubescens vs P. minima 0.570±0.037
P. angulata vs P. alkekengi var. francheti 0.444±0.044
P. angulata vs P. pubescens 0.514±0.043
P. pubescens vs P. alkekengi var. francheti 0.382±0.040

Figure 2

UPGMA dendrogram for 22 samples of 4 Physalis species based on simple sequence repeats (SSR) markers"

Figure 3

The analysis of PCoA for 22 Physalis samples based on simple sequence repeats (SSR) markers along the first two principal axesThe codes are the same as in Table 1."

[1] 国家药典委员会 (2015). 中华人民共和国药典(一部). 北京: 中国医药科技出版社. pp. 360-361.
[2] 郭瑜, 吴东栋, 任志远, 王晓闻, 郭峰 (2017). 酸浆悬浮饮料的研制. 食品研究与开发 38(15), 89-92.
[3] 贾远敏, 陈重, 许琼明, 李笑然, 杨世林 (2013). 毛酸浆浆果的化学成分研究. 中草药 9, 1086-1090.
[4] 李晓岚, 陆嘉惠, 谢良碧, 张爱霞, 陈晓翠, 李学禹 (2015). 4种甘草属植物EST-SSR引物开发及其亲缘关系分析. 西北植物学报 35, 480-485.
[5] 骆丽萍, 成凡钦, 季龙, 虞和永 (2015). 毛酸浆的化学成分研究. 中国中药杂志 22, 4424-4427.
[6] 孙海涛, 高玉超 (2013). 毛酸浆番茄复合调味酱的研制. 中国调味品 38(12), 58-59, 67.
[7] 王晓英, 刘长姣, 段连海, 霍岩 (2014). 毛酸浆开发利用的研究进展. 中国酿造 2, 5-8.
[8] 王赢, 朱丹, 牛广财, 郑唯, 魏文毅, 刘鑫 (2017). 毛酸浆发酵果脯的研制. 中国酿造 36(8), 182-185.
[9] 许亮, 王荣祥, 杨燕云, 王冰 (2009). 中国酸浆属植物药用资源研究. 中国野生植物资源 28, 21-23.
[10] 杨金颖, 杨德草, 李津津 (2014). 酸浆的药理作用研究进展. 内蒙古中医药 33(25), 116-117.
[11] 中国科学院中国植物志编辑委员会 (1978). 中国植物志(第67卷). 北京: 科学出版社. pp. 50.
[12] Axelius B (1996). The phylogenetic relationships of the physaloid genera (Solanaceae) based on morphological data.Am J Bot 83, 118-124.
[13] Ding H, Hu ZJ, Yu LY, Ma ZY, Ma XQ, Chen Z, Wang D, Zhao XF (2014). Induction of quinone reductase (QR) by withanolides isolated from Physalis angulata L. var. villosa Bonati (Solanaceae). Steroids 86, 32-38.
[14] Feng SG, He RF, Lu JJ, Jiang MY, Shen XY, Jiang Y, Wang ZA, Wang HZ (2016a). Development of SSR markers and assessment of genetic diversity in medicinal Chrysanthemum morifolium cultivars. Front Genet 7, 113.
[15] Feng SG, Jiang MY, Shi YJ, Jiao KL, Shen CJ, Lu JJ, Ying QC, Wang HZ (2016b). Application of the ribosomal DNA ITS2 region of Physalis ( Solanaceae): DNA barcoding and phylogenetic study. Front Plant Sci 7, 1047.
[16] Feng SG, Jiao KL, Zhu YJ, Wang HF, Jiang MY, Wang HZ (2018). Molecular identification of species of Physalis ( Solanaceae) using a candidate DNA barcode: the chloroplast psbA-trnH intergenic region. Genome 61, 15-20.
[17] Fu N, Wang PY, Liu XD, Shen HL (2014). Use of EST-SSR markers for evaluating genetic diversity and fingerprinting celery (Apium graveolens L.) cultivars. Molecules 19, 1939-1955.
[18] Garzon-Martínez GA, Osorio-Guarín JA, Delgádillo-Duran P, Mayorga F, Enciso-Rodríguez FE, Landsman D, Mariño-Ramírez L, Barrero LS (2015). Genetic diversity and population structure in Physalis peruviana and related taxa based on InDels and SNPs derived from COSII and IRG markers. Plant Gene 4, 29-37.
[19] Gower JC (1966). Some distance properties of latent root and vector methods used in multivariate analysis.Biometrika 53, 325-338.
[20] Ji L, Yuan YL, Ma ZJ, Chen Z, Gan LS, Ma XQ, Huang DS (2013). Induction of quinone reductase (QR) by withanolides isolated from Physalis pubescens L. ( Solanaceae). Steroids 78, 860-865.
[21] Li X, Zhao JP, Yang M, Liu YL, Li ZC, Li RY, Li XR, Li N, Xu QM, Khan IA, Yang SL (2014). Physalins and withanolides from the fruits ofPhysalis alkekengi L. var. fran- chetii ( Mast.) Makino and the inhibitory activities against human tumor cells. Phytochem Lett 10, 95-100.
[22] Maggie WPS, Manos PS (2005). Untangling Physalis ( Solanaceae) from the physaloids: a two-gene phylogeny of the Physalinae. Syst Bot 30, 216-230.
[23] Nei M, Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases.Proc Natl Acad Sci USA 76, 5269-5273.
[24] Olmstead RG, Bohs L, Migid HA, Santiago-Valentin E, Garcia VF, Collier SM (2008). A molecular phylogeny of the Solanaceae.Taxon 57, 1159-1181.
[25] Rohlf FJ (2000). NTSYS-PC: numerical taxonomy and multivariate analysis system, version 2.00. Setauket, New York:Exeter Software.
[26] Simbaqueba J, Sánchez P, Sanchez E, Zarantes VMN, Chacon MI, Barrero LS, Mariño-Ramírez L (2011). Development and characterization of microsatellite markers for the cape gooseberry Physalis peruviana. PLoS One 6, e26719.
[27] Sun CP, Nie XF, Kang N, Zhao F, Chen LX, Qiu F (2017). A new phenol glycoside from Physalis angulata. Nat Prod Res 31, 1059-1065.
[28] Teshome A, Bryngelsson T, Dagne K, Geleta M (2015). Assessment of genetic diversity in Ethiopian field pea ( Pisum sativum L.) accessions with newly developed EST- SSR markers. BMC Genet 16, 102.
[29] Wang F, Yang T, Burlyaeva M, Li L, Jiang JY, Fang L, Redden R, Zong XX (2015). Genetic diversity of grasspea and its relative species revealed by SSR markers.PLoS One 10, e0118542.
[30] Wei JL, Hu XR, Yang JJ, Yang WC (2012). Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers. PLoS One 7, e50164.
[31] Xu XM, Guan YZ, Shan SM, Luo JG, Kong LY (2016). Withaphysalin-type withanolides from Physalis minima. Phytochem Lett 15, 1-6.
[32] Yang YK, Xie SD, Xu WX, Nian Y, Liu XL, Peng XR, Ding ZT, Qiu MH (2016). Six new physalins from Physalis alkekengi var. franchetii and their cytotoxicity and antibacterial activity. Fitoterapia 112, 144-152.
[33] Zamora-Tavares P, Vargas-Ponce O, Sanchez-Martínez J, Cabrera-Toledo D (2015). Diversity and genetic structure of the husk tomato ( Physalis philadelphica Lam.) in Wes- tern Mexico. Genet Res Crop Evol 62, 141-153.
[34] Zhang WN, Tong WY (2016). Chemical constituents and biological activities of plants from the genus Physalis. Chem Biodivers 13, 48-65.
[1] XU Hao, LIU Ming-Guo, DONG Sheng-Jun, WU Yue-Liang, ZHANG Hao-Kai. Diversity and geographical variations of germplasm resources of Armeniaca mandshurica [J]. Chin J Plant Ecol, 2019, 43(7): 585-600.
[2] He Jieli,Shi Tiantian,Chen Ling,Wang Haigang,Gao Zhijun,Yang Meihong,Wang Ruiyun,Qiao Zhijun. The Genetic Diversity of Common Millet (Panicum miliaceum) Germplasm Resources Based on the EST-SSR Markers [J]. Chin Bull Bot, 2019, 54(6): 723-732.
[3] Jing Zhang,Yuan Li,Na Song,Longshan Lin,Tianxiang Gao. Species identification and phylogenetic relationship of Thryssa species in the coastal waters of China [J]. Biodiv Sci, 2016, 24(8): 888-895.
[4] Xiao Luo,Feng Li,Jing Chen,Zhigang Jiang. The taxonomic status of badgers in the Qinghai Lake area and evolutionary history of Meles [J]. Biodiv Sci, 2016, 24(6): 694-700.
[5] Yani Hu,Zongwen Zhang,Bin Wu,Jia Gao,Yanqin Li. Genetic relationships of buckwheat species based on the sequence analysis of ITS and ndhF-rpl32 [J]. Biodiv Sci, 2016, 24(3): 296-303.
[6] Qi Guo, Dalong Guo, Lili Guo, Lin Zhang, Xiaogai Hou. Application of Simple Sequence Repeat Molecular Markers in the Study of Tree Peony [J]. Chin Bull Bot, 2015, 50(5): 652-664.
[7] Gangbiao Xu,Yan Liang,Yan Jiang,Xiongsheng Liu,Shangli Hu,Yufei Xiao,Bobo Hao. Genetic diversity and population structure of Bretschneidera sinensis, an endangered species [J]. Biodiv Sci, 2013, 21(6): 723-731.
[8] Weimin Li, Sifeng Li, Bin Li. Genetic Diversity in Natural Populations of Abies chensiensis Based on Nuclear Simple Sequence Repeat Markers [J]. Chin Bull Bot, 2012, 47(4): 413-421.
[9] Xiaohong He, Xiuli Han, Weijun Guan, Kechuan Tian, Wenbin Zhang, Yuehui Ma. Genetic variability and relationship of 10 Bactrian camel populations revealed by microsatellite markers [J]. Biodiv Sci, 2012, 20(2): 199-206.
[10] Hongmei Sun, Xiumei Xing, Min Rong, Bo Cong. Genetic diversity and phylogenetic relationship of rabbit breeds based on microsatellite DNA markers [J]. Biodiv Sci, 2008, 16(5): 492-497.
[11] Xinjun Liao Genetic diversity of five native Chinese yak breeds based on microsatel-lite DNA markers [J]. Biodiv Sci, 2008, 16(2): 156-165.
[12] Lubin Li;Xiaojun Guo;Zhenhua Peng;Guanshui Liu;Hongshui Yuan;Baocheng Zhu;Kai Yang*. Effect of the Quantity of AFLP Primer Combinations on Accurately Identifying Bamboo Genetic Relationships [J]. Chin Bull Bot, 2008, 25(04): 449-454.
[13] Ran Di, Xiaohong He, Jianlin Han, Weijun Guan, Yabin Pu, Qianjun Zhao, Baoling Fu, Yuehui Ma. Genetic diversity and phylogenetic relationship of Chinese cashmere goats based on microsatellite DNA markers [J]. Biodiv Sci, 2007, 15(5): 470-478.
[14] Yongfa Luo, Zhigang Wang, Jiaqi Li, Guixiang Zhang, Yaosheng Chen, Yong Liang, Fuqing Yu, Weitao Song, Zifu Zhang . Genetic variation and genetic relationship among 13 Chinese and intro-duced cattle breeds using microsatellite DNA markers [J]. Biodiv Sci, 2006, 14(6): 498-507.
[15] Ling Zhang, Qingjun Li, Dezhu Li. Genetic diversity of Tacca integrifolia (Taccaceae) in the Brahmaputra valley, Tibet [J]. Biodiv Sci, 2006, 14(1): 65-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 2002, 19(01): 121 -124 .
[2] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[3] HE Wei-Ming and ZHONG Zhang-Cheng. Effects of Soil Fertility on Gynostemma pentaphyllum Makino Population Behavior[J]. Chin Bull Bot, 1999, 16(04): 425 -428 .
[4] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chin Bull Bot, 2001, 18(06): 727 -734 .
[5] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chin Bull Bot, 2010, 45(05): 566 -578 .
[6] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chin Bull Bot, 2017, 52(2): 218 -224 .
[7] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development[J]. Chin Bull Bot, 2017, 52(2): 235 -240 .
[8] CUI Xiao-Yong, Du Zhan-Chi, Wang Yan-Fen. Photosynthetic Characteristics of a Semi-arid Sandy Grassland Community in Inner Mongolia[J]. Chin J Plan Ecolo, 2000, 24(5): 541 -546 .
[9] LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng. Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions[J]. Chin J Plan Ecolo, 2012, 36(7): 662 -670 .
[10] HU Bao-Zhong, LIU Di, HU Guo-Fu, ZHANG A-Ying, JIANG Shu-Jun. Random Amplified Polymorphic DNA Study of Local Breeds in Chinese lfalfa[J]. Chin J Plan Ecolo, 2000, 24(6): 697 -701 .