Chin Bull Bot ›› 2020, Vol. 55 ›› Issue (2): 228-239.doi: 10.11983/CBB19113

• SPECIAL TOPICS • Previous Articles     Next Articles

Nitrogen Utilization Mechanism in C3 and C4 Plants

Zhang Lu1,2,He Xinhua2,3,*()   

  1. 1 Maize Research Institute of Shanxi Academy of Agricultural Sciences, Xinzhou 034000, China
    2 College of Resources and Environment, Southwest University, Chongqing 400716, China
    3 School of Plant Biology, University of Western Australia, Perth 6009, Australia
  • Received:2019-06-24 Accepted:2019-12-29 Online:2020-02-12 Published:2020-03-01
  • Contact: He Xinhua E-mail:hexinhua@swu.edu.cn

Abstract:

Improving nitrogen use efficiency (NUE) of plants is not only an important approach to ensure global food security, but also to achieve sustainable agricultural development. In the past half century, great progress has been made in the study of nitrogen utilization mechanism, but the regulatory mechanism of NUE is not clear and the improvement of NUE is still extremely limited. Photosynthetic carbon assimilation and nitrogen assimilation are integrated in a plant, and only by coordinating carbon and nitrogen metabolism can the carbon/nitrogen balance be maintained and the normal growth and development of plants be regulated. Due to the differences in the photosynthetic nitrogen utilization rate (PNUE) between C3 and C4 plants, there will also be differences in the utilization efficiency of nitrogen. In order to improve crop NUE, it is necessary to understand the functions and regulatory mechanisms of key factors involved in nitrogen absorption, transport, assimilation and signal transduction of C3 and C4 plants. In addition, studies on carbon and nitrogen assimilation and their mechanisms under the conditions of increasing atmospheric CO2 concentration and global warming should not be ignored. This paper reviews the differences of key factors on nitrogen use between C3 and C4 plants and the regulatory mechanisms, and proposes possible ways to improve NUE of C3 crops by using genetic approaches.

Key words: photosynthesis, nitrogen metabolism, nitrogen use efficiency, regulatory mechanisms, genetic improvement

Figure 1

A schematic graph of carbon and nitrogen assimilation in C3 and C4 plant leaves (A) Carbon and nitrogen assimilation in leaves of C3 plants; (B) Carbon and nitrogen assimilation in leaves of C4 plants. AA: Amino acid; 3PGA: 3-phosphoglyceric acid; GAP: 3-phosphoglyceraldehyde; GS: Glutamine synthetase; GOGAT: Glutamate synthase; NiR: Nitrite reductase; NR: Nitrate reductase; PEP: Phosphoenolpyruvic acid; RUBP: Ribulose-1,5-disphosphate"

Table 1

NO3- assimilition in C3 and C4 plants"

处理 实验结果 参考文献
不同外源NO3-水平下NO3-吸收累
积(0、1、5和20 mmol∙L-1 KNO3)
NO3-的吸收、叶片中NO3-的累积均为C3大麦>C4玉米
更有效地吸收利用NO3-, C4玉米>C3大麦
Oaks, 1994; 何新华等, 1995
不同外源NO3-水平下的NRA
(1、5和20 mmol∙L-1 KNO3)
1 mmol∙L-1 KNO3下的NRA: C4玉米>C3大麦
5和20 mmol∙L-1 KNO3下的NRA: C3大麦>C4玉米
光照下NRA效率, C4玉米>C3大麦
Oaks, 1994
不同外源NO3-水平下NO3-吸收和
还原(0.5和5.0 mmol∙L-1 NaNO3)
C4植物狗牙草, C3植物早熟禾、黑麦草和牛尾草
0.5 mmol∙L-1和5.0 mmol∙L-1 NaNO3下NRA: C3植物>C4植物
0.5 mmol∙L-1 NaNO3下NRA在根中比例: C4植物(62%)>C3植物(平均16%)
0.5 mmol∙L-1 NaNO3下根占鲜重比例: C4植物(36%)>C3植物(平均27%)
Jiang et al., 2002
不同氮源联合作用(2 mmol∙L-1 NO3-、NH4+和NH4NO3, 320 mg∙L-1 NH3) 不同氮源对NUE的影响: C3小麦NH4NO3>NO3->NH4+, C4玉米NO3->
NH4NO3>NH4+; NH3处理使小麦和玉米的NUE在不同氮源下均降低, 下
降幅度为C3小麦(51%-61%)>C4玉米(31%-37%)
Yin and Raven, 1997, 1998
不同光照和外源蔗糖下NO3-吸收 C3大麦在光照下NO3-吸收比C4玉米高55%, 黑暗时比C4玉米高91%; 光
照下1%外源蔗糖使作物对NO3-的吸收增加: C4玉米(70%)>C3大麦
(31%), 黑暗中大麦和玉米均相应增加了38%
Sehtiya and Goyal, 2000
光下有无DCMU的NO3-还原 无DCMU时正常叶片NRE: C4玉米(93%)>C3大麦(60%)
有DCMU时正常叶片NRE: C4玉米(93%)>C3大麦(40%)
有DCMU时营养耗竭叶片NRE: C4玉米(58%)>C3大麦(0%)
无DCMU时叶片NRA: C3大麦>C4玉米
有DCMU时叶片NRA: 玉米较无DCMU时增加3倍, 对大麦无影响
Basra et al., 2002
15N示踪量化根系对氮素的相对吸收利用(0和1.5 mmol∙L-1 NH4NO3) 生长叶的碳汇强度: C4大黍>C3早熟禾
对氮素的再利用能力: C4大黍>C3早熟禾
氮素相对吸收量: 分蘖和新叶(早熟禾>大黍); 根(大黍>早熟禾)
Santos et al., 2002
O3-代谢及表达调控差异 Eleocharis baldwinii两栖类水草(水生环境为C3模式, 陆生环境为C4
式) C4植物中硝酸盐、亚硝酸盐和2-酮戊二酸/苹果酸转运子上调表达
陈太钰, 2012

Figure 2

Strategies for improving nitrogen use efficiency (NUE) of C3 plants (modified from Nowicka et al., 2018) Pathways/enzymes for activation are marked in upwards arrows (green), while those for repression are marked in downwards arrow (red). Rubisco: Ribulose bisphosphate carboxylase oxygenase; 2-PG: 2-phosphoglycolate; CCM: CO2 concentrating mechanism"

[1] 陈冉冉 ( 2012). 不同氮素水平对转玉米PEPC基因水稻碳、氮代谢的影响.博士论文. 北京: 中国农业科学院. pp. 18-37.
[2] 陈太钰 ( 2012). C3/C4光合作用差异表达基因的鉴定与分析. 博士论文. 武汉: 华中农业大学. pp.42-62.
[3] 巩玥, 陈海苗, 姜闯道, 石雷 ( 2014). 植物叶片解剖结构的量化及其在C4植物高粱中的应用. 植物学报 49, 173-182.
[4] 何新华 ( 1995). C3和C4植物的比较营养学及其展望. 见: 张福锁主编. 土壤与植物营养研究新动态(第三卷). 北京: 中国农业出版社. pp.270-279.
[5] 何新华, 安·奥克斯, 李明启 ( 1995). C3和C4禾本科作物的氮素利用效率. 植物学通报 12(3), 20-27.
[6] 何新华, 李明启 ( 1994). C3和C4植物的氮素利用效率. 云南植物研究 16, 93-94.
[7] 李霞, 王超, 陈晏, 孙志伟 ( 2008). PEPC酶活性作为水稻高光效育种筛选指标的研究. 江苏农业学报 24, 559-564.
[8] 罗璇, 郭彤, 胡银岗 ( 2014). 小麦和谷子C4光合途径关键酶活性及其与光合和蒸腾的关系. 麦类作物学报 34, 1083-1091.
[9] 王修兰, 徐师华, 梁红 ( 1998). CO2浓度增加对C3、C4作物生育和产量影响的实验研究. 中国农业科学 31, 55-61.
[10] 魏爱丽, 王志敏, 翟志席, 龚元石 ( 2003). 土壤干旱对小麦旗叶和穗器官C4光合酶活性的影响. 中国农业科学 36, 508-512.
[11] 谢晓金, 李仁英, 张耀鸿, 刘璐, 申双和, 包云轩 ( 2016). CO2浓度升高对水稻和玉米叶片光合生理特性的影响. 江苏农业科学 44(10), 120-123.
[12] 徐晓鹏, 傅向东, 廖红 ( 2016). 植物铵态氮同化及其调控机制的研究进展. 植物学报 51, 152-166.
[13] 曾长立, 王晓明, 张福锁, 王兴仁 ( 2001). 浅析C3植物和C4植物对大气中CO2浓度升高条件下的反应. 江汉大学学报 18(3), 6-14.
[14] 张庆琛, 许为钢, 胡琳, 李艳, 张磊, 齐学礼 ( 2010). 玉米C4型全长pepc基因导入普通小麦的研究. 麦类作物学报 30, 194-197.
[15] 甄晓溪, 刘浩然, 李鑫, 徐凡, 张文忠 ( 2019). 异源过表达OsATG8b基因提高转基因拟南芥的氮/碳胁迫耐受性和产量. 植物学报 54, 23-36.
[16] Appenroth KJ, Meço R, Jourdan V, Lillo C ( 2000). Phytochrome and post-translational regulation of nitrate reductase in higher plants. Plant Sci 159, 51-56.
[17] Aubry S, Brown NJ, Hibberd JM ( 2011). The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot 62, 3049-3059.
[18] Bandyopadhyay A, Datta K, Zhang J, Yang W, Raychaudhuri S, Miyao M, Datta SK ( 2007). Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Sci 172, 1204-1209.
[19] Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, Milo R ( 2011). The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402-4410.
[20] Basra AS, Dhawan AK, Goyal SS ( 2002). Dcmu inhibits in vivo nitrate reduction in illuminated barley (C3) leaves but not in maize (C4): a new mechanism for the role of light? Planta 215, 855-861.
[21] Betti M, Bauw H, Busch FA, Fernie AR, Keech O, Levey M, Ort Donald R, Parry Martin AJ, Sage R, Timm S, Walker B, Weber APM ( 2016). Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. J Exp Bot 67, 2977-2988.
[22] Bloom AJ, Asensio JSR, Randall L, Rachmilevitch S, Cousins AB, Carlisle EA ( 2012). CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants. Ecology 93, 355-367.
[23] Bloom AJ, Burger M, Asensio JSR, Cousins AB ( 2010). Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328, 899-903.
[24] Bloom AJ, Burger M, Kimball BA, Pinter Jr JP ( 2014). Nitrate assimilation is inhibited by elevated CO2 in field- grown wheat. Nat Climate Change 4, 477-480.
[25] Bowes G ( 2010). Single-cell C4 photosynthesis in aquatic plants. In: Raghavendra AS, Sage RF, eds. C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Dordrecht: Springer. pp. 63-80.
[26] Bräutigam A, Gowik U ( 2016). Photorespiration connects C3 and C4 photosynthesis. J Exp Bot 67, 2953-2962.
[27] Bräutigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP ( 2011). An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol 155, 142-156.
[28] Bräutigam A, Schliesky S, Külahoglu C, Osborne CP, Weber APM ( 2014). Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. J Exp Bot 65, 3579-3593.
[29] Brown RH ( 1978). A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. Crop Sci 18, 93-98.
[30] Busch FA, Sage TL, Cousins AB, Sage RF ( 2013). C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ 36, 200-212.
[31] Campbell WH ( 1999). Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50, 277-303.
[32] Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ ( 2015). Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ 38, 1817-1832.
[33] Christin PA, Boxall SF, Gregory R, Edwards EJ, Hartwell J, Osborne CP ( 2013). Parallel recruitment of multiple genes into C4 photosynthesis. Genome Biol Evol 5, 2174-2187.
[34] Christin PA, Osborne CP ( 2014). The evolutionary ecology of C4 plants. New Phytol 204, 765-781.
[35] Edwards EJ, Osborne CP, Stromberg CAE, Smith SA, Bond WJ, Christin PA, Cousins AB, Duvall MR, Fox DL, Freckleton RP, Ghannoum O, Hartwell J, Huang Y, Janis CM, Keeley JE, Kellogg EA, Knapp AK, Leakey ADB, Nelson DM, Saarela JM, Sage RF, Sala OE, Salamin N, Still CJ, Tipple B ( 2010). The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587-591.
[36] Erb TJ, Zarzycki J ( 2016). Biochemical and synthetic biology approaches to improve photosynthetic CO2-fixation. Curr Opin Chem Biol 34, 72-79.
[37] Furbank RT ( 2011). Evolution of the C4 photosynthetic mechanism: are there really three C4 acid decarboxylation types? J Exp Bot 62, 3103-3108.
[38] Gowik U, Bräutigam A, Weber KL, Weber AP, Westhoff P ( 2011). Evolution of C4 photosynthesis in the genus flaveria: how many and which genes does it take to make C4? Plant Cell 23, 2087-2105.
[39] Hagemann M, Bauwe H ( 2016). Photorespiration and the potential to improve photosynthesis. Curr Opin Chem Biol 35, 109-116.
[40] He XH, Oaks A, Li M ( 1994). Nitrogen use efficiency in C3 and C4 plants. Agro’s Ann Rev Plant Physiol 1, 147-188.
[41] Hibberd JM, Sheehy JE, Langdale JA ( 2008). Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr Opin Plant Biol 11, 228-231.
[42] Hikosaka K, Shigeno A ( 2009). the role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia 160, 443-451.
[43] IPCC ( 2013). Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. pp.119-158.
[44] Jiang ZC, Hull RJ, Sullivan WM ( 2002). Nitrate uptake and reduction in C3 and C4 grasses. J Plant Nutr 25, 1303-1314.
[45] Kajala K, Covshoff S, Karki S, Woodfield H, Tolley BJ, Dionora MJA, Mogul RT, Mabilangan AE, Danila FR, Hibberd JM, Quick WP ( 2011). Strategies for engineering a two-celled C4 photosynthetic pathway into rice. J Exp Bot 62, 3001-3010.
[46] Karki S, Rizal G, Quick WP ( 2013). Improvement of photosynthesis in rice ( Oryza sativa L.) by inserting the C4 pathway. Rice 6, 28.
[47] Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M ( 1999). High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17, 76-80.
[48] Ku MSB, Kano-Murakami Y, Matsuoka M ( 1996). Evolution and expression of C4 photosynthesis genes. Plant Physiol 111, 949-957.
[49] Külahoglu C, Denton AK, Sommer M, Maß J, Schliesky S, Wrobel TJ, Berckmans B, Gongora-Castillo E, Buell CR, Simon R, De Veylder L, Bräutigam A, Weber APM ( 2014). Comparative transcriptome atlases reveal altered gene expression modules between two cleomaceae C3 and C4 plant species. Plant Cell 26, 3243-3260.
[50] Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R ( 2011). Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low- nitrogen conditions. Plant Biotechnol J 9, 826-837.
[51] Langdale JA ( 2011). C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell 23, 3879-3892.
[52] Li MR, Wedin DA, Tieszen LL ( 1999). C3 and C4 photosynthesis in Cyperus( Cyperaceae) in temperate eastern North America. Can J Bot 77, 209-218.
[53] Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR ( 2006). Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 1918-1921.
[54] Majeran W, Cai Y, Sun Q, van Wijk KJ ( 2005). Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17, 3111-3140.
[55] Majeran W, van Wijk KJ ( 2009). Cell-type-specific differentiation of chloroplasts in C4 plants. Trends Plant Sci 14, 100-109.
[56] Melzer E, O'Leary MH ( 1987). Anapleurotic CO2 fixation by phosphoenolpyruvate carboxylase in C3 plants. Plant Physiol 84, 58-60.
[57] Miyao M, Fukayama H ( 2003). Metabolic consequences of overproduction of phosphoenolpyruvate carboxylase in C3 plants. Arch Biochem Biophys 414, 197-203.
[58] Monson RK, Rawsthorne S ( 2000). CO2 assimilation in C3-C4 intermediate plants. In: Leegood RC, Sharkey TD, von Caemmerer S, eds. Photosynthesis: Physiology and Metabolism. Dordrecht: Springer. pp. 533-550.
[59] NASA ( 2014). Global climate change: vital signs of the planet, available at: http://climate.nasa.gov/400ppmquotes . 2018-12-30.
[60] Nelson T ( 2011). The grass leaf developmental gradient as a platform for a systems understanding of the anatomical specialization of C4 leaves. J Exp Bot 62, 3039-3048.
[61] Nowicka B, Ciura J, Szymańska R, Kruk J ( 2018). Improving photosynthesis, plant productivity and abiotic stress tolerance—current trends and future perspectives. J Plant Physiol 231, 415-433.
[62] Oaks A ( 1994). Efficiency of nitrogen utilization in C3 and C4 cereals. Plant Physiol 106, 407-414.
[63] Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MAJ, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WFJ, von Caemmerer S, Weber APM, Yeates TO, Yuan JS, Zhu XG ( 2015). Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112, 8529-8536.
[64] Patterson DT, Flint EP ( 1980). Potential effects of global atmospheric CO2 enrichment on the growth and competitiveness of C3 and C4 weed and crop plants. Weed Sci 28, 71-75.
[65] Peterhansel C, Krause K, Braun HP, Espie GS, Fernie AR, Hanson DT, Keech O, Maurino VG, Mielewczik M, Sage RF ( 2013). Engineering photorespiration: current state and future possibilities. Plant Biol 15, 754-758.
[66] Pinto H, Sharwood RE, Tissue DT, Ghannoum O ( 2014). Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2. J Exp Bot 65, 3669-3681.
[67] Radchuk R, Radchuk V, Götz KP, Weichert H, Richter A, Emery RJN, Weschke W, Weber H ( 2007). Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: effects of improved nutrient status on seed maturation and transcriptional regulatory networks. Plant J 51, 819-839.
[68] Reich PB, Hobbie SE, Lee TD, Pastore MA ( 2018). Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360, 317-320.
[69] Ripley BS, Cunniff J, Osborne CP ( 2013). Photosynthetic acclimation and resource use by the C3 and C4 subspecies of Alloteropsis semialata in low CO2 atmospheres. Global Change Biol 19, 900-910.
[70] Ruan CJ, Shao HB, dan Silva JAT ( 2012). A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering. Crit Rev Biotechnol 32, 1-21.
[71] Sage RF ( 2001). C4 plants. In: Levin S, ed. Encyclopedia of Biodiversity. London: Academic Press. pp.575-598.
[72] Sage RF, Christin PA, Edwards EJ ( 2011). The C4 plant lineages of planet earth. J Exp Bot 62, 3155-3169.
[73] Sage RF, Pearcy RW ( 1987). The nitrogen use efficiency of C3 and C4 plants. I. Leaf nitrogen, growth, and biomass partitioning in Chenopodium album(L.) and Amaranthus retroflexus Plant Physiol 84, 954-958.
[74] Sage RF, Sage TL, Kocacinar F ( 2012). Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63, 19-47.
[75] Sage RF, Wedin DA, Li MR ( 1999). The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK, eds. C4 Plant Biology. San Diego: Academic Press. pp.313-375.
[76] Santos PM, Thornton B, Corsi M ( 2002). Nitrogen dynamics in the intact grasses poa trivialis and panicum maximum receiving contrasting supplies of nitrogen. J Exp Bot 53, 2167-2176.
[77] Sehtiya HL, Goyal SS ( 2000). Comparative uptake of nitrate by intact seedlings of C3 (barley) and C4 (corn) plants: effect of light and exogenously supplied sucrose. Plant Soil 227, 185-190.
[78] Spreitzer RJ, Salvucci ME ( 2002). Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53, 449-475.
[79] Suzuki S, Murai N, Kasaoka K, Hiyoshi T, Imaseki H, Burnell JN, Arai M ( 2006). Carbon metabolism in transgenic rice plants that express phospho enolpyruvate carboxylase and/or phosphoenolpyruvate carboxykinase. Plant Sci 170, 1010-1019.
[80] Suzuki Y, Miyamoto T, Yoshizawa R, Mae T, Makino A ( 2009). Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Plant Cell Environ 32, 417-427.
[81] Suzuki Y, Ohkubo M, Hatakeyama H, Ohashi K, Yoshizawa R, Kojima S, Hayakawa T, Yamaya T, Mae T, Makino A ( 2007). Increased Rubisco content in transgenic rice transformed with the 'Sense' rbcS gene. Plant Cell Physiol 48, 626-637.
[82] Tamoi M, Shigeoka S ( 2005). Improvement of photosynthesis in higher plants. In: Omasa K, Nouchi I, De Kok LJ, eds. Plant Responses to Air Pollution and Global Change. Tokyo: Springer. pp. 141-147.
[83] Taylor SH, Hulme SP, Rees M, Ripley BS, Ian Woodward F, Osborne CP ( 2010). Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol 185, 780-791.
[84] Tissue DT, Dippery JK, Thomas RB, Strain BR ( 1995). Effects of low and elevated CO2 on C3 and C4 annuals. Oecologia 101, 21-28.
[85] Tsuchida H, Tamai T, Fukayama H, Agarie S, Nomura M, Onodera H, Ono K, Nishizawa Y, Lee BH, Hirose S, Toki S, Ku MSB, Matsuoka M, Miyao M ( 2001). High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. Plant Cell Physiol 42, 138-145.
[86] Vogan PJ, Sage RF ( 2012). Effects of low atmospheric CO2 and elevated temperature during growth on the gas exchange responses of C3, C3-C4 intermediate, and C4 species from three evolutionary lineages of C4 photosynthesis. Oecologia 169, 341-352.
[87] Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H, Edwards GE ( 2002). Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera(Chenopodiaceae). Plant J 31, 649-662.
[88] Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE ( 2001). Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414, 543-546.
[89] Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR ( 2016). The costs of photorespiration to food production now and in the future. Annu Rev Plant Biol 67, 107-129.
[90] Wang P, Kelly S, Fouracre JP, Langdale JA ( 2013). Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Plant J 75, 656-670.
[91] Ward JK, Tissue DT, Thomas BR, Strain BDR ( 1999). Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biol 5, 857-867.
[92] Weber APM, von Caemmerer S ( 2010). Plastid transport and metabolism of C3 and C4 plants-comparative analysis and possible biotechnological exploitation. Curr Opin Plant Biol 13, 256-264.
[93] Wessinger ME, Edwards GE, Ku MSB ( 1989). Quantity and kinetic properties of ribulose 1,5-bisphosphate carboxylase in C3, C4, and C3-C4 intermediate species of flaveria (asteraceae). Plant Cell Physiol 30, 665-671.
[94] Whitney SM, Sharwood RE, Orr D, White SJ, Alonso H, Galmés J ( 2011). Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate in flaveria. Proc Natl Acad Sci USA 108, 14688-14693.
[95] Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T ( 2004). Metabolic engineering with dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA 101, 7833-7838.
[96] Yin ZH, Raven JA ( 1997). A comparison of the impacts of various nitrogen sources on acid-base balance in C3 Triticum aestivum L.and C4 Zea mays L. plants. J Exp Bot 48, 315-324.
[97] Yin ZH, Raven JA ( 1998). Influences of different nitrogen sources on nitrogen- and water-use efficiency, and carbon isotope discrimination, in C3 Triticum aestivum L. and C4 Zea mays L. plants. Planta 205, 574-580.
[98] Zeng Q, Liu B, Gilna B, Zhang YL, Zhu CW, Ma HL, Pang J, Chen GP, Zhu JG ( 2011). Elevated CO2 effects on nutrient competition between a C3 crop (Oryza sativa L.) and a C4 weed(Echinochloa crusgalli L.). Nutr Cycl Agroecosys 89, 93-104.
[99] Zheng ZL ( 2009). Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav 4, 584-591.
[1] Han Mei-ling, Tan Ru-jiao, Chao Dai-yin. A New Progress of Green Revolution: Epigenetic Modification Dual-regulated by Gibberellin and Nitrogen Supply Contributes to Breeding of High Yield and Nitrogen Use Efficiency Rice [J]. Chin Bull Bot, 2020, 55(1): 5-8.
[2] FU Yi-Wen, TIAN Da-Shuan, WANG Jin-Song, NIU Shu-Li, ZHAO Ken-Tian. Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands [J]. Chin J Plant Ecol, 2019, 43(7): 566-575.
[3] Su Yuekai,Qiu Jingren,Zhang Han,Song Zhenqiao,Wang Jianhua. Recent Progress in Evolutionary Technology of CRISPR/Cas9 System for Plant Genome Editing [J]. Chin Bull Bot, 2019, 54(3): 385-395.
[4] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[5] LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898.
[6] ZHU Qi-Lin, XIANG Rui, TANG Li, LONG Guang-Qiang. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition [J]. Chin J Plan Ecolo, 2018, 42(6): 672-680.
[7] CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plan Ecolo, 2018, 42(5): 585-594.
[8] ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment [J]. Chin J Plan Ecolo, 2018, 42(2): 229-239.
[9] Chen Xu, Xiaolong Liu, Qian Li, Fenglou Ling, Zhihai Wu, Zhian Zhang. Effect of Salt Stress on Photosynthesis and Chlorophyll Fluorescence Characteristics of Rice Leaf for Nitrogen Levels [J]. Chin Bull Bot, 2018, 53(2): 185-195.
[10] Muqier Hasi, Xueyao Zhang, Guoxiang Niu, Yinliu Wang, Jianhui Huang. Effects of Nitrogen Addition on Ecosystem CO2 Exchange in a Meadow Steppe, Inner Mongolia [J]. Chin Bull Bot, 2018, 53(1): 27-41.
[11] Ji-Mei HAN, Wang-Feng ZHANG, Dong-Liang XIONG, Jaume FLEXAS, Ya-Li ZHANG. Mesophyll conductance and its limiting factors in plant leaves [J]. Chin J Plan Ecolo, 2017, 41(8): 914-924.
[12] Sun Wanmei, Wang Xiaozhu, Han Erqin, Han Li, Sun Liping, Peng Zaihui, Wang Bangjun. Advances in the Functions of Immunophilins in Plants [J]. Chin Bull Bot, 2017, 52(6): 808-819.
[13] Jian-Guo CAI, Meng-Qi WEI, Yi ZHANG, Yun-Long WEI. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla [J]. Chin J Plan Ecolo, 2017, 41(5): 570-576.
[14] Liang-Hua CHEN, Juan LAI, Xiang-Wei HU, Wan-Qin YANG, Jian ZHANG, Xiao-Jun WANG, Ling-Jie TAN. Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution [J]. Chin J Plan Ecolo, 2017, 41(4): 480-488.
[15] Ji-Ye ZENG, Zheng-Hong TAN, Nobuko SAIGUSA. Using approximate Bayesian computation to infer photosynthesis model parameters [J]. Chin J Plan Ecolo, 2017, 41(3): 378-385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Cui Gao;Yuxia Chen;Ying Bao;Min Feng;Anming Lu. Studies on Sexual Organs and Embryological Development Morphology of Speirantha gardenii (Convallariaceae)[J]. Chin Bull Bot, 2010, 45(06): 705 -712 .
[2] Jiang Gao-ming. The Impact of Globae Increasing of CO2 on Plants[J]. Chin Bull Bot, 1995, 12(04): 1 -7 .
[3] Zhang Jun Han Bi-wen. Advance in the Study of Histochemical Localization for[J]. Chin Bull Bot, 1995, 12(专辑3): 131 -142 .
[4] Tang Yan-cheng. A Short Guide to the International Code of Botanical Nomenclature V.[J]. Chin Bull Bot, 1984, 2(04): 51 -57 .
[5] Xu Ji. The Protective Protein of Nitrogenase Against Oxygen Damage-Fe-S Protein[J]. Chin Bull Bot, 1986, 4(12): 1 -4 .
[6] . [J]. Chin Bull Bot, 2001, 18(05): 633 .
[7] Huang Zhao-xiang;Zheng Zhen-gui and Zhu Du. Ecological Effect of Taxodium ascendens-Oryza sativa Ecosystem(I) The Growing Characteristic of Taxodium Ascendens in the Ecosystem[J]. Chin Bull Bot, 1996, 13(02): 48 -51 .
[8] GU Rui-Sheng;LIU Qun-Lu;CHEN Xue-Mei and JIANG Xiang-Ning. Comparison and Optimization of the Methods on Protein Extraction and SDS-PAGE in Woody Plants[J]. Chin Bull Bot, 1999, 16(02): 171 -177 .
[9] Jiang Gao-ming. LI-6400 Portable Photosynthesis System: Principle, Function, Basic Operation and Main Problems and Solutions During Measurement[J]. Chin Bull Bot, 1996, 13(增刊): 72 -76 .
[10] Li Ling;Luo Yun-xiu;He Jian-hui and Pan Rui-chi. Promoting the Formation of Adventitious Roots in Cutting of Some Woody Plants by GL Reagent[J]. Chin Bull Bot, 1996, 13(增刊): 63 -65 .