Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (4): 441-454.doi: 10.11983/CBB18191

• RESEARCH ARTICLE • Previous Articles     Next Articles

Chloroplast Genome Structural Characteristics and Phylogenetic Relationships of Oleaceae

Zhao Yuemei1,Yang Zhenyan2,Zhao Yongping1,Li Xiaoling1,Zhao Zhixin1,Zhao Guifang3,*()   

  1. 1 College of Biopharmaceutical and Food Engineering, Shangluo University, Shangluo 726000, China
    2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
    3 Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
  • Received:2018-09-06 Accepted:2019-04-23 Online:2020-01-08 Published:2019-07-01
  • Contact: Zhao Guifang


In this study, the chloroplast genomes from 19 species (11 genera) in Oleaceae were compared to reveal the general characteristics and structural variations. The chloroplast genome sizes in Oleaceae were 154-165 kb, and the differences were mainly caused by the length of large single-copy regions. The chloroplast genome sizes of 3 species from the genus Jasminum differed greatly from that for other species; in addition, the introns from the clpP and accD genes were lost in Jasminum. Synteny analyses showed several gene rearrangements in 3 Jasminum species that were probably caused by inversions. The boundary genes between IRb/small single copy (SSC) and SSC/IRa regions in 3 Jasminum species differed from others. Repeat sequences and simple sequence repeat detection demonstrated that Jasminum had significant differences in repeat number and repeat length as compared with other genera. On the basis of shared protein-coding genes among 19 species, Abeliophyllum distichum and Forsythia suspensa were the early-diverging clades in Oleaceae.

Key words: Oleaceae, chloroplast genomes, structural characteristics, phylogeny


Table 2

Length of coding region and complete gene of intron-contained protein-coding genes of chloroplast genomes"

Species petD rps12 clpP rpoC1 rps16
1 483/1196 372/908 591/2047 2064/2821 267/1132
2 483/1218 372/908 591/2043 2073/2834 267/1147
3 483/1230 375/911 591/2045 2052/2820 267/1134
4 483/1261 381/917 591/2043 2073/2827 267/1153
5 483/1134 372/908 591/2045 2052/2811 255/1147
6 483/1148 372/908 591/2053 2073/2830 267/1136
7 483/1217 372/908 591/2039 2073/2834 267/1142
8 483/1196 372/908 588/2045 2064/2822 267/1131
9 483/1196 381/917 660 2076/2844 267/1162
10 483/1203 387/923 786 2052/2808 267/1154
11 483/1213 387/923 786 2052/2807 267/1161
12 483/1215 381/917 591/2041 2073/2833 267/1143
13 483/1217 372/908 591/2043 2073/2830 267/1143
14 483/1215 372/908 591/2046 2073/2832 267/1141
15 483/1213 371/907 591/2043 2073/2831 267/1142
16 483/1213 372/908 591/2044 2073/2831 267/1142
17 483/1215 373/909 591/2041 2073/2833 267/1141
18 483/1203 372/908 591/2047 2073/2834 267/1147
19 483/1199 372/913 591/2041 2073/2784 237/1115

Figure 1

The type and percentage of repeated sequences in the chloroplast genomes of 19 species in Oleaceae (A) Number of three type repeats; (B) Percentage of three type repeats; (C) Percentage of SSR types; (D) Number and types of SSRs"

Figure 2

Comparison of the border regions of the chloroplast genomes from 19 species in Oleaceae"

Figure 3

Graphic view of the alignment of chloroplast genomes from 19 species in Oleaceae The species number 1-19 same as Table 1. Sequence identity varying between 50% and 100% are drawn on the y axis of the plot, the x axis corresponds to the coordinates on the Abeliophyllum distichum chloroplast genome. Arrows indicate the annotated genes and their transcriptional direction."

Figure 4

Synteny analyses of chloroplast genomes from 19 species in Oleaceae The species number 1-19 same as Table 1."

Figure 5

Phylogenetic relationship of 19 species in Oleaceae inferred from ML and BI analyses based on shared protein-coding genes The numbers near each node are bootstrap support values in ML and posterior probability in BI. The outgroups are Cornus controversa, Echites umbellatus and Catharanthus roseus. ML: Maximum likelihood; BI: Bayesian inference"

[1] 李巧丽, 延娜, 宋琼, 郭军战 ( 2018). 鲁桑叶绿体基因组序列及特征分析. 植物学报 53, 94-103.
[2] 唐萍, 阮秋燕, 彭程 ( 2011). 禾本科植物叶绿体基因组结构的系统进化研究. 中国农学通报 27(30), 17.
[3] Baali-Cherif D, Besnard G ( 2005). High genetic diversity and clonal growth in relict populations of Olea europaea subsp. laperrinei ( Oleaceae) from Hoggar, Algeria. Ann Bot 96, 823-830.
[4] Benson G ( 1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573-580.
[5] Besnard G, de Casas RR, Christin PA, Vargas P ( 2009). Phylogenetics of Olea( Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann Bot 104, 143-160.
[6] Besnard G, Hernández P, Khadari B, Dorado G, Savolainen V ( 2011). Genomic profiling of plastid DNA variation in the mediterranean olive tree. BMC Plant Biol 11, 80.
[7] Besnard G, Khadari B, Baradat P, Bervillé A ( 2002). Olea europaea( Oleaceae) phylogeography based on chloroplast DNA polymorphism. Theor Appl Genet 104, 1353-1361.
[8] Blazier JC, Ruhlman TA, Weng ML, Rehman SK, Sabir JSM, Jansen RK ( 2016). Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement. Sci Rep 6, 24595.
[9] Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK ( 2006). The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23, 2175-2190.
[10] Darling ACE, Mau B, Blattner FR, Perna ANT ( 2004). Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14, 1394-1403.
[11] Dong WP, Xu C, Cheng T, Lin K, Zhou SL ( 2013). Sequencing angiosperm plastid genomes made easy: a complete set of universal primers and a case study on the phylogeny of Saxifragales. Genome Biol Evol 5, 989-997.
[12] Flora of China Editorial Committee ( 1995). Flora of China, Vol. 16. Beijing & St. Louis: Science Press & Missouri Botanical Garden Press. pp. 143-188.
[13] Flora of China Editorial Committee ( 1996). Flora of China, Vol. 15. Beijing & St. Louis: Science Press & Missouri Botanical Garden Press. pp. 272-319.
[14] Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I ( 2004). Vista: computational tools for comparative genomics. Nucleic Acids Res 32, W273-W279.
[15] Gao L, Su YJ, Wang T ( 2010). Plastid genome sequencing, comparative genomics, and phylogenomics: current status and prospects. J Syst Evol 48, 77-93.
[16] Gray BN, Ahner BA, Hanson MR ( 2009). Extensive homologous recombination between introduced and native regulatory plastid DNA elements in transplastomic plants. Transgenic Res 18, 559-572.
[17] Greiner S, Wang X, Rauwolf U, Silber MV, Mayer K, Meurer J, Haberer G, Herrmann RG ( 2008). The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera. I. Sequence evaluation and plastome evolution. Nucleic Acids Res 36, 2366-2378.
[18] Guisinger MM, Kuehl JV, Boore JL, Jansen RK ( 2011). Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 28, 583-600.
[19] Hansen DR, Dastidar SG, Cai ZQ, Penaflor C, Kuehl JV, Boore JL, Jansen RK ( 2007). Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus( Buxaceae), Chloranthus 45, 547-563.
[20] He YX, Liu LX, Yang SH, Dong MF, Yuan WJ, Shang FD ( 2017). Characterization of the complete chloroplast genome of chinese fringetree (Chionanthus retusus). Conserv Genet Resour 9, 431-434.
[21] Hirao T, Watanabe A, Kurita M, Kondo T, Takata K ( 2008). Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biol 8, 70.
[22] Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M ( 1989). The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217, 185-194.
[23] Hu YC, Zhang Q, Rao GY , Sodmergen ( 2008). Occurrence of plastids in the sperm cells of Caprifoliaceae: biparental plastid inheritance in angiosperms is unilaterally derived from maternal inheritance. Plant Cell Physiol 49, 958-968.
[24] Huang H, Shi C, Liu Y, Mao SY, Gao LZ ( 2014). Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol 14, 151.
[25] Jeandroz S, Roy A, Bousquet J ( 1997). Phylogeny and phylogeography of the circumpolar genus Fraxinus( Oleaceae) based on internal transcribed spacer sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 7, 241-251.
[26] Katayama H, Ogihara Y ( 1996). Phylogenetic affinities of the grasses to other monocots as revealed by molecular analysis of chloroplast DNA. Curr Genet 29, 572-581.
[27] Khakhlova O, Bock R ( 2006). Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46, 85-94.
[28] Kim C, Kim HJ, Do HDK, Jung J, Kim JH ( 2018). Characterization of the complete chloroplast genome of Fraxinus chiisanensis( Oleaceae), an endemic to Korea. Conserv Genet Resour 11, 63-66.
[29] Kim HW, Lee HL, Lee DK, Kim KJ ( 2016). Complete plastid genome sequences of Abeliophyllum distichum Nakai (Oleaceae), a Korea endemic genus. Mitochondr DNA Part B 1, 596-598.
[30] Knox EB, Downie SR, Palmer JD ( 1993). Chloroplast genome rearrangements and the evolution of giant lobelias from herbaceous ancestors. Mol Biol Evol 10, 414-430.
[31] Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R ( 2001). Reputer: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29, 4633-4642.
[32] Lee HL, Jansen RK, Chumley TW, Kim KJ ( 2007). Gene relocations within chloroplast genomes of Jasminum and Menodora( Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24, 1161-1180.
[33] Li JH, Alexander JH, Zhang DL ( 2002). Paraphyletic Syringa( Oleaceae): evidence from sequences of nuclear ribosomal DNA ITS and ETS regions. Syst Bot 27, 592-597.
[34] Maier RM, Neckermann K, Igloi GL, Kösel H ( 1995). Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251, 614-628.
[35] Ogihara Y, Terachi T, Sasakuma T ( 1988). Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci USA 85, 8573-8577.
[36] Palmer JD ( 1985). Comparative organization of chloroplast genomes. Annu Rev Genet 19, 325-354.
[37] Posada D ( 2008). jModeltest: phylogenetic model averaging. Mol Biol Evol 25, 1253-1256.
[38] Ronquist F, Huelsenbeck JP ( 2003). Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574.
[39] Stamatakis A, Hoover P, Rougemont J ( 2008). A rapid bootstrap algorithm for the raxml web servers. Syst Biol 57, 758-771.
[40] Thiel T, Michalek W, Varshney R, Graner A ( 2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106, 411-422.
[41] Van de Paer C, Bouchez O, Besnard G ( 2018). Prospects on the evolutionary mitogenomics of plants: a case study on the olive family (Oleaceae). Mol Ecol Res 18, 407-423.
[42] Wallander E ( 2008). Systematics of Fraxinus( Oleaceae) and evolution of dioecy. Plant Syst Evol 273, 25-49.
[43] Wallander E, Albert VA ( 2000). Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. Am J Bot 87, 1827-1841.
[44] Wang WB, Yu H, Wang JH, Lei WJ, Gao JH, Qiu XP, Wang JS ( 2017). The complete chloroplast genome sequences of the medicinal plant Forsythia suspensa( Oleaceae). Int J Mol Sci 18, 2288.
[45] Weng ML, Blazier JC, Govindu M, Jansen RK ( 2014). Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol Biol Evol 31, 645-659.
[46] Zhang TW, Fang YJ, Wang XM, Deng X, Zhang XW, Hu SN, Yu J ( 2012). The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes. PLoS One 7, e30531.
[47] Zhang X, Zhou T, Yang J, Sun JJ, Ju MM, Zhao YM, Zhao GF ( 2018). Comparative analyses of chloroplast genomes of Cucurbitaceae species: lights into selective pressures and phylogenetic relationships. Molecules 23, 2165.
[1] Gang Yao. Phylogenetic study of Amaranthaceae s.l. based on multiple plastid DNA fragments [J]. Chin Bull Bot, 2020, 55(4): 0-0.
[2] Gu Yufeng,Jin Dongmei,Liu Baodong,Dai Xiling,Yan Yuehong. Morphology Characters and Evolution of Ferns Scale Ι: Pteridaceae [J]. Chin Bull Bot, 2020, 55(2): 163-176.
[3] TANG Li-Li,ZHANG Mei,ZHAO Xiang-Lin,KANG Mu-Yi,LIU Hong-Yan,GAO Xian-Ming,YANG Tong,ZHENG Pu-Fan,SHI Fu-Chen. Species distribution and community assembly rules of Juglans mandshurica in North China [J]. Chin J Plant Ecol, 2019, 43(9): 753-761.
[4] Bin Cao, Guojie Li, Ruilin Zhao. Species diversity and geographic components of Russula from the Greater and Lesser Khinggan Mountains [J]. Biodiv Sci, 2019, 27(8): 854-866.
[5] Chen Zuoyi, Xu Xiaojing, Zhu Suying, Zhai Mengyi, Li Yang. Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China [J]. Biodiv Sci, 2019, 27(2): 149-158.
[6] Zhiyuan Chen,Jun Liu,Xingpeng Yang,Meng Liu,Ya Wang,Zhibin Zhang,Du Zhu. Community composition and diversity of cultivable endophytic bacteria isolated from Dongxiang wild rice [J]. Biodiv Sci, 2019, 27(12): 1320-1329.
[7] Xuerui Dong, Hong Zhang, Minggang Zhang. Explaining the diversity and endemic patterns based on phylogenetic approach for woody plants of the Loess Plateau [J]. Biodiv Sci, 2019, 27(12): 1269-1278.
[8] WANG Xue, CHEN Guang-Shui, YAN Xiao-Jun, CHEN Ting-Ting, JIANG Qi, CHEN Yu-Hui, FAN Ai-Lian, JIA Lin-Qiao, XIONG De-Cheng, HUANG Jin-Xue. Variations in the first-order root diameter in 89 woody species in a subtropical evergreen broadleaved forest [J]. Chin J Plant Ecol, 2019, 43(11): 969-978.
[9] Meiling Ge,Qinzeng Xu,Shiliang Fan,Zongxing Wang,Xuelei Zhang. Taxonomy at order and family levels of the benthic groups of Polychaeta in the coastal waters of China [J]. Biodiv Sci, 2018, 26(9): 998-1003.
[10] Luo Junjie, Wang Ying, Shang Hui, Zhou Xile, Wei Hongjin, Huang Sunan, Gu Yufeng, Jin Dongmei, Dai Xiling, Yan Yuehong. Phylogeny and Systematics of the Genus Microlepia (Dennstaedtiaceae) based on Palynology and Molecular Evidence [J]. Chin Bull Bot, 2018, 53(6): 782-792.
[11] Lingyun Wu,Shuangquan Huang. Insect-pollinated cereal buckwheats: Its biological characteristics and research progress [J]. Biodiv Sci, 2018, 26(4): 396-405.
[12] Shaojun Ling, Qianwan Meng, Liang Tang, Mingxun Ren. Gesneriaceae on Hainan Island: distribution patterns and phylogenetic relationships [J]. Biodiv Sci, 2017, 25(8): 807-815.
[13] Wenying Li, Xia Li, Kaizhi Xie, Wangqiu Deng, Wenying Zhuang. Systematics and species diversity of botryosphaeriaceous fungi [J]. Biodiv Sci, 2017, 25(8): 874-885.
[14] Xiaoxu Jia, Xiujun Tang, Yanfeng Fan, Junxian Lu, Shenghai Huang, Qinglian Ge, Yushi Gao, Wei Han. Genetic diversity of local chicken breeds in East China based on mitochondrial DNA D-loop region [J]. Biodiv Sci, 2017, 25(5): 540-548.
[15] Xue Zhang, Yurui Wang, Yangbo Fan, Xiaotian Luo, Xiaozhong Hu, Feng Gao. Morphology, ontogeny and molecular phylogeny of Euplotes aediculatus Pierson, 1943 (Ciliophora, Euplotida) [J]. Biodiv Sci, 2017, 25(5): 549-560.
Full text



[1] Yang Ying-gen;Zhang Li-jun and Li yu. Studies on the Postharvest Physiology properties of Peach Fruits[J]. Chin Bull Bot, 1995, 12(04): 47 -49 .
[2] Zhou Shi-gong. Applications of Lanthanum in Botanical Research[J]. Chin Bull Bot, 1992, 9(02): 26 -29 .
[3] . [J]. Chin Bull Bot, 1996, 13(专辑): 105 .
[4] 杜维广 王彬如 谭克辉 郝迺斌. An Approach to the Breeding of Soybean with High Photosynthetic Efficiency[J]. Chin Bull Bot, 1984, 2(23): 7 -11 .
[5] ZHAO Yun-Yun ZHOU Xiao-Mei YANG Cai. Production of Hybrid F1 Between Avena magna and Avena nuda and It''s Identification[J]. Chin Bull Bot, 2003, 20(03): 302 -306 .
[6] . Professor Jiayang Li, a Plant Molecular Genetist[J]. Chin Bull Bot, 2003, 20(03): 370 -372 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 100 -101 .
[8] Qiong Jiang, Youning Wang, Lixiang Wang, Zhengxi Sun, Xia Li. Validation of Reference Genes for Quantitative RT-PCR Analysis in Soybean Root Tissue under Salt Stress[J]. Chin Bull Bot, 2015, 50(6): 754 -764 .
[9] MA Ke-Ming. Advances of the Study on Species Abundance Pattern[J]. Chin J Plan Ecolo, 2003, 27(3): 412 -426 .