Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (1): 81-92.doi: 10.11983/CBB18012

• SPECIAL TOPICS • Previous Articles     Next Articles

Advances in the Regulation on Autophagy by Reactive Oxygen Species in Plant Cells

Ma Danying,Ji Dongchao,Xu Yong,Chen Tong(),Tian Shiping   

  1. Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
  • Received:2018-01-12 Accepted:2018-03-13 Online:2019-07-31 Published:2019-01-01
  • Contact: Chen Tong


Damaged proteins, organelles or exogenous substances are engulfed in double membrane vesicles and delivered to the lysosome (vacuoles) for degradation and recycled in eukaryotes. This highly conserved biological process is called autophagy. Reactive oxygen species (ROS) are byproducts of cellular aerobic metabolism, which are widely involved in the regulating different biological processes as signaling molecules. Recent evidence suggests a strong link between autophagy and ROS in plants. Here, we summarize the types and roles of ROS and describe the molecular mechanism of autophagy according to the latest research in plants. The effect of ROS on regulation of autophagy is mainly discussed.

Key words: autophagy, reactive oxygen species, regulation

Figure 1

Different reactive oxygen species (ROS) sources control autophagy in plant cells (modified from Pérez-Pérez et al., 2012b) ROS can be generated by plasma membrane-localized NOX and different organelles, including chloroplast, mitochondria, peroxisome, and endoplasmic reticulum. Excess ROS then induce autophagy, which contributes to down-regulate ROS production and remove damaged cellular components. NADPH: Reduced nicotinamide adenine dinucleotide phosphate; O2: Dioxygen; O2·-: Superoxide anion; H2O2: Hydrogen peroxide; 1O2: Singlet oxygen"

1 蔡霞, 方晓艾, 田兰婷, 赵雪艳 ( 2016). 显微镜技术在植物细胞自噬研究中的应用. 电子显微学报 35, 180-185.
doi: 10.3969/j.issn.1000-6281.2016.02.013
2 黄晓, 李发强 ( 2016). 细胞自噬在植物细胞程序性死亡中的作用. 植物学报 51, 859-862.
doi: 10.11983/CBB16011
3 景红娟, 周广舟, 谭晓荣, 平康康, 任雪建 ( 2012). 活性氧对植物自噬调控的研究进展. 植物学报 47, 534-542.
doi: 10.3724/SP.J.1259.2012.00534
4 林植芳, 刘楠 ( 2012). 活性氧调控植物生长发育的研究进展. 植物学报 47, 74-86.
doi: 10.3724/SP.J.1259.2012.00074
5 刘洋, 张静, 王秋玲, 侯岁稳 ( 2018). 植物细胞自噬研究进展. 植物学报 53, 5-16.
6 任晨霞, 龚清秋 ( 2014). 细胞自噬在植物碳氮营养中作用的研究进展. 中国细胞生物学学报 36, 407-414.
7 王燕, 刘玉乐 ( 2010). 植物细胞自噬研究进展. 中国细胞生物学学报 32, 677-689.
8 杨小龙, 李漾漾, 刘玉凤, 齐明芳, 李天来 ( 2017). 植物细胞选择性自噬研究进展. 园艺学报 44, 2015-2028.
doi: 10.16420/j.issn.0513-353x.2017-0144
9 Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S ( 2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30, 161-175.
doi: 10.3109/07388550903524243 pmid: 20214435
10 Alers S, L?f?er AS, Wesselborg S, Stork B ( 2012). Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32, 2-11.
doi: 10.1128/MCB.06159-11 pmid: 3255710
11 Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, Inoki K, Guan KL, Shen JJ, Person MD, Kusewitt D, Mills GB, Kastan MB, Walker CL ( 2010). ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 107, 4153-4158.
12 Apel K, Hirt H ( 2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55, 373-399.
13 Asada K ( 2006). Production and scavenging of reactive oxy- gen species in chloroplasts and their functions. Plant Phy- siol 141, 391-396.
14 Ashford TP, Porter KR ( 1962). Cytoplasmic components in hepatic cell lysosomes. Cell Biol 12, 198-202.
doi: 10.1083/jcb.12.1.198 pmid: 1304110
15 Bassham DC ( 2007). Plant autophagy—more than a starvation response. Curr Opin Plant Biol 10, 587-593.
16 Bernales S, McDonald KL, Walter P ( 2006). Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4, e423.
doi: 10.1371/journal.pbio.0040423 pmid: 1661684
17 Bienert GP, Chaumont F ( 2014). Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840, 1596-1604.
doi: 10.1016/j.bbagen.2013.09.017 pmid: 24060746
18 Blagosklonny MV ( 2008). Aging: ROS or TOR. Cell Cycle 7, 3344-3354.
19 Buchanan BB, Balmer Y ( 2005). Redox regulation: a broadening horizon. Annu Rev Plant Biol 56, 187-220.
20 Budanov AV ( 2011). Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal 15, 1679-1690.
doi: 10.1089/ars.2010.3530 pmid: 20712410
21 Chaouch S, Queval G, Noctor G ( 2012). AtRbohF is a crucial modulator of defence-associated metabolism and a key actor in the interplay between intracellular oxidative stress and pathogenesis responses in Arabidopsis. Plant J 69, 613-627.
doi: 10.1111/j.1365-313x.2011.04816.x pmid: 21985584
22 Chung T, Phillips AR, Vierstra RD ( 2010). ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG- 12A and ATG12B loci.Plant J 62, 483-493.
doi: 10.1111/j.1365-313X.2010.04166.x pmid: 20136727
23 Chung T, Suttangkakul A, Vierstra RD ( 2009). The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol 149, 220-234.
24 Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL ( 2014). The plant metacaspase AtMC1 in pathogen-trig- gered programmed cell death and aging: functional linkage with autophagy. Cell Death Differ 21, 1399-1408.
doi: 10.1038/cdd.2014.50 pmid: 24786830
25 Dames SA, Mulet JM, Rathgeb-Szabo K, Hall MN, Grzesiek S ( 2005). The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem 280, 20558-20564.
doi: 10.1074/jbc.M501116200 pmid: 15772072
26 del Río LA ( 2011). Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Bio- phys 506, 1-11.
doi: 10.1016/ pmid: 21055384
27 del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB ( 2002). Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53, 1255-1272.
doi: 10.1002/(SICI)1099-0844(199709)15:3<203::AID-CBF742>3.0.CO;2-J pmid: 11997374
28 Dewaele M, Maes H, Agostinis P ( 2010). ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6, 838-854.
doi: 10.4161/auto.6.7.12113 pmid: 20505317
29 Díaz-Troya S, Pérez-Pérez ME, Pérez-Martín M, Moes S, Jeno P, Florencio FJ, Crespo JL ( 2011). Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas.Plant Physiol 157, 730-741.
doi: 10.4161/psb.18767 pmid: 21825107
30 Finkel T ( 2011). Signal transduction by reactive oxygen species. J Cell Biol 194, 7-15.
31 Foyer CH, Bloom AJ, Queval G, Noctor G ( 2009). Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60, 455-484.
doi: 10.1146/annurev.arplant.043008.091948 pmid: 19575589
32 Foyer CH, Noctor G ( 2003). Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxi- somes and mitochondria. Physiol Plant 119, 355-364.
33 Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C ( 2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28, 1091-1101.
doi: 10.1002/bies.20493 pmid: 17041898
34 Han SJ, Wang Y, Zheng XJ, Jia Q, Zhao JP, Bai F, Hong YG, Liu YL ( 2015). Cytoplastic glyceraldehyde-3-phosph- ate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamia- na.Plant Cell 27, 1316-1331.
doi: 10.1105/tpc.114.134692 pmid: 25829441
35 Han SJ, Yu BJ, Wang Y, Liu YL ( 2011). Role of plant autophagy in stress response. Protein & Cell 2, 784-791.
doi: 10.1007/s13238-011-1104-4 pmid: 4875296
36 Hayward AP, Dinesh-Kumar SP ( 2011). What can plant autophagy do for an innate immune response? Annu Rev Phytopathol 49, 557-576.
doi: 10.1146/annurev-phyto-072910-095333 pmid: 21370973
37 He CC, Klionsky DJ ( 2009). Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43, 67-93.
doi: 10.1146/annurev-genet-102808-114910 pmid: 2831538
38 Henry E, Fung N, Liu J, Drakakaki G, Coaker G ( 2015). Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses. PLoS Genet 11, e1005199.
doi: 10.1371/journal.pgen.1005199 pmid: 25918875
39 Hofius D, Li L, Hafrén A, Coll NS ( 2017). Autophagy as an emerging arena for plant-pathogen interactions. Curr Opin Plant Biol 38, 117-123.
doi: 10.1016/j.pbi.2017.04.017 pmid: 28545004
40 Hofius D, Munch D, Bressendorff S, Mundy J, Petersen M ( 2011). Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death Differ 18, 1257-1262.
doi: 10.1038/cdd.2011.43 pmid: 21527936
41 Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura SI, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N ( 2009). Nutrient-dependent mTORC1 association with the ULK1-Atg13- FIP200 complex required for autophagy. Mol Biol Cell 20, 1981-1991.
doi: 10.1091/mbc.e08-12-1248
42 Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T ( 2008). Mobilization of Rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process.Plant Physiol 148, 142-155.
doi: 10.1104/pp.108.122770
43 Izumi M, Ishida H, Nakamura S, Hidema J ( 2017). Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. Plant Cell 29, 377-394.
doi: 10.1105/tpc.16.00637 pmid: 28123106
44 Izumi M, Wada S, Makino A, Ishida H ( 2010). The autophagic degradation of chloroplasts via Rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiol 154, 1196-1209.
doi: 10.4161/psb.6.5.14949
45 Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y ( 2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150, 1507-1513.
46 Kihara A, Noda T, Ishihara N, Ohsumi Y ( 2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae.J Cell Biol 152, 519-530.
doi: 10.1083/jcb.152.3.519
47 Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y ( 2000). The reversible modi?cation regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151, 263-276.
doi: 10.1083/jcb.151.2.263 pmid: 11038174
48 Kissová I, Deffieu M, Manon S, Camougrand N ( 2004). Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 279, 39068-39074.
doi: 10.1074/jbc.M406960200 pmid: 15247238
49 Kwon SI, Cho HJ, Jung JH, Yoshimoto K, Shirasu K, Park OK ( 2010 a). The Rab GTPase RabG3b functions in auto- phagy and contributes to tracheary element differentiation in Arabidopsis. Plant J 64, 151-164.
doi: 10.1016/j.jneumeth.2004.07.001 pmid: 20659276
50 Kwon SI, Cho HJ, Park OK ( 2010 b). Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation. Autophagy 6, 1187-1189.
doi: 10.4161/auto.6.8.13429 pmid: 20861670
51 Ledford HK, Chin BL, Niyogi KK ( 2007). Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii.Eukaryot Cell 6, 919-930.
52 Lenz HD, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham DC, Vierstra RD, Parker JE, Bautor J, Molina A, Escudero V, Shindo T, van der Hoorn RA, Gust AA, Nürnberger T ( 2011). Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic patho- gens. Plant J 66, 818-830.
doi: 10.1111/j.1365-313X.2011.04546.x pmid: 21332848
53 Levine B, Klionsky DJ ( 2017). Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: breakthroughs in baker’s yeast fuel advances in biomedical research. Proc Natl Acad Sci USA 114, 201-205.
doi: 10.1073/pnas.1619876114 pmid: 28039434
54 Liu YL, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar SP ( 2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567-577.
doi: 10.1016/j.cell.2005.03.007 pmid: 15907470
55 Liu YM, Bassham DC ( 2012). Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63, 215-237.
doi: 10.1146/annurev-arplant-042811-105441 pmid: 22242963
56 Liu YM, Burgos JS, Deng Y, Srivastava R, Howell SH, Bassham DC ( 2012). Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. Plant Cell 24, 4635-4651.
57 Liu YM, Xiong Y, Bassham DC ( 2009). Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5, 954-963.
58 Malhotra JD, Kaufman RJ ( 2007). Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9, 2277-2293.
59 Meijer WH, van der Klei IJ, Veenhuis M, Kiel JAKW ( 2007). ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexo- phagy pathways also require organism-speci?c genes. Autophagy 3, 106-116.
doi: 10.4161/auto.3595 pmid: 17204848
60 Minina EA, Moschou PN, Vetukuri RR, Sanchez-Vera V, Cardoso C, Liu QS, Elander PH, Dalman K, Beganovic M, Yilmaz JL, Marmon S, Shabala L, Suarez MF, Ljung K, Novák O, Shabala S, Stymne S, Hofius D, Bozhkov PV ( 2018). Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. J Exp Bot 69, 1415-1432.
doi: 10.1093/jxb/ery010 pmid: 29365132
61 Mizushima N ( 2010). The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22, 132-139.
doi: 10.1016/ pmid: 20056399
62 Mizushima N, Yoshimori T, Ohsumi Y ( 2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27, 107-132.
doi: 10.1146/annurev-cellbio-092910-154005 pmid: 21801009
63 M?ller IM ( 2001). Plant mitochondria and oxidative stress: electron transport, NADPH turnover and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52, 561-591.
64 Moreau M, Azzopardi M, Clément G, Dobrenel T, Marchive C, Renne C, Martin-Magniette ML, Taconnat L, Renou JP, Robaglia C, Meyer C ( 2012). Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell 24, 463-481.
65 Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y ( 2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10, 458-467.
66 Okamoto K, Kondo-Okamoto N, Ohsumi Y ( 2009). Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17, 87-97.
doi: 10.1016/j.devcel.2009.06.013 pmid: 19619494
67 Pérez-Pérez ME, Couso I, Crespo JL ( 2012 a). Carotenoid de?ciency triggers autophagy in the model green alga Chlamydomonas reinhardtii.Autophagy 8, 376-388.
68 Pérez-Pérez ME, Florencio FJ, Crespo JL ( 2010). Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii.Plant Physiol 152, 1874-1888.
69 Pérez-Pérez ME, Lemaire SD, Crespo JL ( 2012 b). Reactive oxygen species and autophagy in plants and algae. Plant Physiol 160, 156-164.
70 Pu YT, Luo XJ, Bassham DC ( 2017). TOR-dependent and - independent pathways regulate autophagy in Arabidopsis thaliana.Front Plant Sci 8, 1204.
71 Qi H, Xia FN, Xie LJ, Yu LJ, Chen QF, Zhuang XH, Wang Q, Li FQ, Jiang LW, Xie Q, Xiao S ( 2017). TRAF family proteins regulate autophagy dynamics by modulating AU- TOPHAGY PROTEIN6 stability in Arabidopsis. Plant Cell 29, 890-911.
doi: 10.1105/tpc.17.00056 pmid: 28351989
72 Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K ( 2014). Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014, 761264.
doi: 10.1155/2014/761264 pmid: 3920909
73 Ren MZ, Qiu SQ, Venglat P, Xiang DQ, Feng L, Selvaraj G, Datla R ( 2011). Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis. Plant Physiol 155, 1367-1382.
doi: 10.1104/pp.110.169045 pmid: 21266656
74 Reumann S, Voitsekhovskaja O, Lillo C ( 2010). From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma 247, 233-256.
doi: 10.1007/s00709-010-0190-0 pmid: 20734094
75 Robaglia C, Thomas M, Meyer C ( 2012). Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr Opin Plant Biol 15, 301-307.
doi: 10.1016/j.pbi.2012.01.012 pmid: 22305521
76 Rutkowski DT, Kaufman RJ ( 2007). That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci 32, 469-476.
doi: 10.1016/j.tibs.2007.09.003 pmid: 17920280
77 Santos CX, Tanaka LY, Wosniak J Jr, Laurindo FRM ( 2009). Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11, 2409-2427.
78 Schafer FQ, Wang HP, Kelley EE, Cueno KL, Martin SM, Buettner GR ( 2002). Comparing beta-carotene, vitamin E and nitric oxide as membrane antioxidants. Biol Chem 383, 671-681.
doi: 10.1515/BC.2002.069 pmid: 12033456
79 Scheler C, Durner J, Astier J ( 2013). Nitric oxide and reactive oxygen species in plant biotic interactions. Curr Opin Plant Biol 16, 534-539.
doi: 10.1016/j.pbi.2013.06.020 pmid: 23880111
80 Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z ( 2007). Reactive oxygen species are essential for autophagy and speci?cally regulate the activity of Atg4. EMBO J 26, 1749-1760.
81 Schieke SM, Finkel T ( 2006). Mitochondrial signaling, TOR, and life span. Biol Chem 387, 1357-1361.
doi: 10.1515/BC.2006.170 pmid: 17081107
82 Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S, Yamada K, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M ( 2013). Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. Plant Cell 25, 4967-4983.
doi: 10.1105/tpc.113.116947 pmid: 24368788
83 Shin JH, Yoshimoto K, Ohsumi Y, Jeon JS, An G ( 2009). OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol Cells 27, 67-74.
84 Soto-Burgos J, Bassham DC ( 2017) SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana.PLoS One 12, e0182591.
85 Sun X, Wang P, Jia X, Huo LQ, Che RM, Ma FW ( 2018). Improvement of drought tolerance by overexpressing Md- ATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple.Plant Biotechnol J 16, 545-557.
doi: 10.1111/pbi.12794 pmid: 28703378
86 Suttangkakul A, Li FQ, Chung T, Vierstra RD ( 2011). The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23, 3761-3779.
doi: 10.4161/auto.20240 pmid: 21984698
87 Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R ( 2011). Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14, 691-699.
doi: 10.1016/j.pbi.2011.07.014 pmid: 21862390
88 Swanson S, Gilroy S ( 2010). ROS in plant development. Physiol Plant 138, 384-392.
89 Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H ( 2007). Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 282, 5617-5624.
doi: 10.1016/j.amc.2004.10.048 pmid: 17166847
90 Thompson AR, Vierstra RD ( 2005). Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol 8, 165-173.
doi: 10.1016/j.pbi.2005.01.013 pmid: 15752997
91 Tolkovsky AM ( 2009). Mitophagy. Biochim Biophys Acta 1793, 1508-1515.
92 Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H ( 1999). A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11, 1195-1206.
93 Ungermann C, Langosch D ( 2005). Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing. J Cell Sci 118, 3819-3828.
doi: 10.1242/jcs.02561 pmid: 16129880
94 üstün S, Hafrén A, Hofius D ( 2017). Autophagy as a mediator of life and death in plants. Curr Opin Plant Biol 40, 122-130.
doi: 10.3892/etm.2017.4287 pmid: 28946008
95 van Dongen JT, Licausi F ( 2015). Oxygen sensing and signaling. Annu Rev Plant Biol 66, 345-367.
96 Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A ( 2009). Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149, 885-893.
doi: 10.1104/pp.108.130013
97 Wang CW, Klionsky DJ ( 2003). The molecular mechanism of autophagy. Mol Med 9, 65-76.
98 Wang Y, Liu YL ( 2013). Autophagic degradation of leaf starch in plants. Autophagy 9, 1247-1248.
99 Wang Y, Yu BJ, Zhao JP, Guo JB, Li Y, Han SJ, Huang L, Du YM, Hong YG, Tang DZ, Liu YL ( 2013). Autophagy contributes to leaf starch degradation. Plant Cell 25, 1383-1399.
100 Wang Y, Zheng XY, Yu BJ, Han SJ, Guo JB, Tang HP, Yu AYL, Deng HT, Hong YG, Liu YL ( 2015). Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy. Autophagy 11, 2259-2274.
doi: 10.1080/15548627.2015.1113365 pmid: 4835195
101 Xia KF, Liu T, Ouyang J, Wang R, Fan T, Zhang MY ( 2011). Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice ( Oryza sativa L.).DNA Res 18, 363-377.
doi: 10.1093/dnares/dsr024 pmid: 21795261
102 Xiong Y, Contento AL, Bassham DC ( 2007 a). Disruption of autophagy results in constitutive oxidative stress in Ara- bidopsis. Autophagy 3, 257-258.
doi: 10.4161/auto.3847 pmid: 17312382
103 Xiong Y, Contento AL, Nguyen PQ, Bassham DC ( 2007 b). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143, 291-299.
doi: 10.1104/pp.106.092106 pmid: 17098847
104 Xiong Y, McCormack M, Li L, Hall Q, Xiang CB, Sheen J ( 2013). Glucose-TOR signaling reprograms the transcriptome and activates meristems. Nature 496, 181-186.
doi: 10.1038/nature12030 pmid: 23542588
105 Xiong Y, Sheen J ( 2014). The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol 164, 499-512.
doi: 10.1104/pp.113.229948 pmid: 24385567
106 Xu GY, Wang SS, Han SJ, Xie K, Wang Y, Li JL, Liu YL ( 2017). Plant Bax Inhibitor-1 interacts with ATG6 to regulate autophagy and programmed cell death. Autophagy 13, 1161-1175.
doi: 10.1080/15548627.2017.1320633 pmid: 28537463
107 Yorimitsu T, Nair U, Yang ZF, Klionsky DJ ( 2006). Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281, 30299-30304.
doi: 10.1074/jbc.M607007200 pmid: 1828866
108 Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y ( 2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967-2983.
doi: 10.1105/tpc.104.025395 pmid: 15494556
109 Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K ( 2009). Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21, 2914-2927.
110 Yoshimoto K, Takano Y, Sakai Y ( 2010). Autophagy in plants and phytopathogens. FEBS Lett 584, 1350-1358.
doi: 10.1016/j.febslet.2010.01.007 pmid: 20079356
111 Zhang DY, Wang W, Sun XJ, Xu DQ, Wang CY, Zhang Q, Wang HF, Luo WW, Chen Y, Chen HY, Liu ZX ( 2016). AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy 12, 1447-1459.
doi: 10.1080/15548627.2016.1185576 pmid: 27304906
112 Zhou XM, Zhao P, Wang W, Zou J, Cheng TH, Peng XB, Sun MX ( 2015). A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues. DNA Res 22, 245-257.
doi: 10.1093/dnares/dsv012 pmid: 26205094
[1] . Advances in the Regulation of Plant Growth and Development by miR172-AP2 Module [J]. Chin Bull Bot, 2020, 55(2): 0-0.
[2] Dai Yujia,Luo Xiaofeng,Zhou Wenguan,Chen Feng,Shuai Haiwei,Yang Wenyu,Shu Kai. Plant Systemic Signaling Under Biotic and Abiotic Stresses Conditions [J]. Chin Bull Bot, 2019, 54(2): 255-264.
[3] Zhen Xiaoxi, Liu Haoran, Li Xin, Xu Fan, Zhang Wenzhong. Heterologous Overexpression of Autophagy-related Gene OsATG8b from Rice Confers Tolerance to Nitrogen/Carbon Starvation and Increases Yield in Arabidopsis [J]. Chin Bull Bot, 2019, 54(1): 23-36.
[4] Song Xuewei, Wei Jiebing, Di Shaokang, Pang Yongzhen. Recent Advances in the Regulation Mechanism of Transcription Factors and Metabolic Engineering of Anthocyanins [J]. Chin Bull Bot, 2019, 54(1): 133-156.
[5] Chen Ying, Wang Ting, Hua Xuejun. Recent Progress in Research of Proline Transport Genes [J]. Chin Bull Bot, 2018, 53(6): 754-763.
[6] He Guangming, Deng Xingwang. Death Signal Transduction: Chloroplast-to-Mitochondrion Communication Regulates Programmed Cell Death in Plants [J]. Chin Bull Bot, 2018, 53(4): 441-444.
[7] Zhang Xian-sheng. Chinese Scientists Have Made a Great Breakthrough in the Mechanism of Programmed Cell Death [J]. Chin Bull Bot, 2018, 53(4): 445-446.
[8] Zhao Xijuan, Qian Lichao, Liu Yule. Chinese Scientists Made Breakthrough Progresses in Plant Programmed Cell Death [J]. Chin Bull Bot, 2018, 53(4): 447-450.
[9] Zhang Ping, Hao Xiuying, Yu Ruifeng, Zhou Hongmei, Zhu Jianjun. A Tentative Method for Monitoring the Dynamic Features of Transpiration Regulation in Ferula krylovii Leaves [J]. Chin Bull Bot, 2018, 53(3): 353-363.
[10] Yang Liu, Jing Zhang, Qiuling Wang, Suiwen Hou. Research Progress in Plant Autophagy [J]. Chin Bull Bot, 2018, 53(1): 5-16.
[11] Shujuan Xu, Kang Chong. Mechanism of The “Pioneer” Transcription Factor LEC1 in Resetting Vernalized State in Early Embryos [J]. Chin Bull Bot, 2018, 53(1): 1-4.
[12] Xinlu Xu, Dandan Li, Yuandan Ma, Jianyun Zhai, Jianfei Sun, Yan Gao, Rumin Zhang. Responses of the Antioxidant Defense System of Osmanthus fragrans cv. ‘Tian Xiang TaiGe’ to Drought, Heat and the Synergistic Stress [J]. Chin Bull Bot, 2018, 53(1): 72-81.
[13] Dan-Dan LUO, Chuan-Kuan WANG, Ying JIN. Plant water-regulation strategies: Isohydric versus anisohydric behavior [J]. Chin J Plan Ecolo, 2017, 41(9): 1020-1032.
[14] Gan Huang, Xiao Wang, Xuefeng Jin, Xiaojing Wang, Yaqin Wang. GRXC9 Negatively Regulates Leaf Size in Arabidopsis [J]. Chin Bull Bot, 2017, 52(5): 550-559.
[15] Shengchun Zhang, Qingming Li, Chengwei Yang. Arabidopsis Metalloprotease FtSH4 Regulates Leaf Senescence Through Auxin and Reactive Oxygen Species [J]. Chin Bull Bot, 2017, 52(4): 453-464.
Full text



[1] Liu Ying-di. The Role of Ultrastructure in Algal Systematics[J]. Chin Bull Bot, 1990, 7(04): 18 -23 .
[2] Fan Guo-qiang and Jiang Jian-ping. Study on the Methods of Extraction of Protein from Paulownia Leaves[J]. Chin Bull Bot, 1997, 14(03): 61 -64 .
[3] Tong Zhe and Lian Han-ping. Cryptochrome[J]. Chin Bull Bot, 1985, 3(02): 6 -9 .
[4] Huang Ju-fu and Luo Ai-ling. The Advances of the Studies on Extraction of FeMoco from Nitrogenase Molybdenum-Iron Protein[J]. Chin Bull Bot, 1991, 8(03): 19 -25 .
[5] Hsu Rong-jiang Gu Wen-mao Gao Jing-cheng and Peng Chang-ming. Inhibitory Effect of High CO2 and Low O2 Tension on Ethylene Evolution in Apples[J]. Chin Bull Bot, 1984, 2(01): 29 -31 .
[6] Zou Shu-hua;Zhao Shu-wen and Xu Bao. Electropheresis Profiles of Esterase Isozymes in Different Types of Soybean[J]. Chin Bull Bot, 1985, 3(06): 18 -20 .
[7] . [J]. Chin Bull Bot, 1999, 16(增刊): 49 -52 .
[8] Chi Tingfei;Shi Xiaofang;Huang Ruzhu;Zheng Xiangyun;Yuan Xiangning and Wu Dangjian. A Preliminary Study on the Chemical Constituents of the Leave Oil in prunus zippeliana Mig[J]. Chin Bull Bot, 1986, 4(12): 44 -45 .
[9] Houqing Zeng, Yaxian Zhang, Shang Wang, Xiajun Zhang, Huizhong Wang, Liqun Du. Calcium/calmodulin-mediated Signal Transduction System in Plants[J]. Chin Bull Bot, 2016, 51(5): 705 -723 .
[10] Zhu Zhi-qing. Abbreviations for some Commonly Used Terms in Ultrastructures of Plant Cells[J]. Chin Bull Bot, 1984, 2(04): 57 -58 .