Chin Bull Bot ›› 2017, Vol. 52 ›› Issue (6): 808-819.doi: 10.11983/CBB16202

• SPECIAL TOPICS • Previous Articles    

Advances in the Functions of Immunophilins in Plants

Sun Wanmei, Wang Xiaozhu, Han Erqin, Han Li, Sun Liping, Peng Zaihui, Wang Bangjun*()   

  1. Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
  • Received:2016-10-20 Accepted:2017-03-18 Online:2018-02-22 Published:2017-11-01
  • Contact: Wang Bangjun E-mail:bangjunwang@swu.edu.cn

Abstract:

Immunophilins are receptors for immunosuppressive drugs that exist widely in bacteria, viruses, fungi, plants and animals. In plants, immunophilins have three subfamilies: FK506-binding proteins, cyclosporine A-binding proteins (cyclophilins) and parvulins. Many members of immunophilins are peptidyl-prolyl cis-trans isomerases that may act as molecular chaperones for protein folding. In this review, we summarize the research progress in the functions of plant immunophilins in hormone signaling, photosynthesis, stress response and gene expression etc., to provide valuable information for further study of immunophilin functions.

Key words: growth and development, gene expression, immunophilins, photosynthesis, stress response

Table 1

The localization and function of some immunophilins in plant cells"

Figure 1

Immunophilins regulate downstream signaling by interacting with related proteins(A) TWD1 helps the correct secretion of ABCB transporters to the plasma membrane, thus regulating ABCB-mediated auxin transport; Brassinosteroid might affect this process (Geisler and Bailly, 2007; Wu et al., 2010); (B) TWD1 physically interacts with BRI1 and BAK1 in a BR-independent manner, which may facilitate the phosphorylation of BRI1 and BAK1, inhibit BIN2 activity,and affect BES1/BZR1 phosphorylation, eventually regulate the BR response gene expression (Zhao et al., 2016; Chaiwanon et al., 2016); (C) A conformational change of BZR1 mediated by AtCYP20-2 causes altered flowering time through the modulation of FLD expression (Zhang et al., 2013); (D) In the presence of auxin, OsIAA11 conformation was changed by interacting with LRT2, and then formed the OsTIR1-OsIAA11 complex. OsTIR1-OsIAA11 complex facilitated OsIAA11 binding to 26S proteasome and caused OsIAA11 degradation; Finally, ARFs became active and activated auxin-regulated genes (Jing et al., 2015)."

[1] 于彦丽, 李艳娇, 庞凯元, 张发军, 孙琦, 李文才, 孟昭东 (2014). 植物FKBP基因家族的结构及生物学功能. 遗传 36, 536-546.
[2] Ahn JC, Kim DW, You YN, Seok MS, Park JM, Hwang H, Kim BG, Luan S, Park HS, Cho HS (2010). Classification of rice ( Oryza sativa l. Japonica nipponbare) immunophi- lins (FKBPs, CYPs) and expression patterns under water stress. BMC Plant Biol 10, 253.
[3] Arevalo-Rodriguez M, Wu XY, Hanes SD, Heitman J (2004). Prolyl isomerases in yeast.Front Biosci 9, 2420-2446.
doi: 10.2741/1405 pmid: 15353296
[4] Aviezer-Hagai K, Skovorodnikova J, Galigniana M, Farchi-Pisanty O, Maayan E, Bocovza S, Efrat Y, von Koskull-D?ring P, Ohad N, Breiman A (2007). Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (At- FKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90.Plant Mol Biol 63, 237-255.
doi: 10.1007/s11103-006-9085-z
[5] Banasavadi-Siddegowda YK, Mai JB, Fan YF, Bhattacharya S, Giovannucci DR, Sanchez ER, Fischer G, Wang XD (2011). FKBP38 peptidylprolyl isomerase promotes the folding of cystic fibrosis transmembrane conductance regulator in the endoplasmic reticulum.J Biol Chem 286, 43071-43080.
doi: 10.1074/jbc.M111.269993 pmid: 3234856
[6] Barik S (2006). Immunophilins: for the love of proteins.Cell Mol Life Sci 63, 2889-2900.
doi: 10.1007/s00018-006-6215-3 pmid: 17075696
[7] Bissoli G, Ni?oles R, Fresquet S, Palombieri S, Bueso E, Rubio L, García-Sánchez MJ, Fernández JA, Mulet JM, Serrano R (2012). Peptidyl-prolyl cis-trans isomerase RO- F2 modulates intracellular pH homeostasis in Arabidopsis. Plant J 70, 704-716.
[8] Chaiwanon J, Garcia VJ, Cartwright H, Sun Y, Wang ZY (2016). Immunophilin-like FKBP42/TWISTED DWARF1 in- teracts with the receptor kinase BRI1 to regulate brassino- steroid signaling in Arabidopsis.Mol Plant 9, 593-600.
doi: 10.1016/j.molp.2016.01.008 pmid: 26808213
[9] Dominguez-Solis JR, He ZY, Lima A, Ting JL, Buchanan BB, Luan S (2008). A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts.Proc Natl Acad Sci USA 105, 16386-16391.
doi: 10.1073/pnas.0808204105
[10] Dunyak BM, Gestwicki JE (2016). Peptidyl-proline isomerases (PPIases): targets for natural products and natural product-inspired compounds.J Med Chem 59, 9622-9644.
doi: 10.1021/acs.jmedchem.6b00411 pmid: 27409354
[11] Earley K, Smith MR, Weber R, Gregory BD, Poethig RS (2010). An endogenous F-box protein regulates ARGONAUTE1 inArabidopsis thaliana. Silence 1, 15.
[12] Fu AG, He ZY, Cho HS, Lima A, Buchanan BB, Luan S (2007). A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thali- ana. Proc Natl Acad Sci USA 104, 15947-15952.
doi: 10.1073/pnas.0707851104 pmid: 17909185
[13] Geisler M, Bailly A (2007). Tête-à-tête: the function of FKBPs in plant development.Trends Plant Sci 12, 465-473.
doi: 10.1016/j.tplants.2007.08.015
[14] Geisler M, Girin M, Brandt S, Vincenzetti V, Plaza S, Paris N, Kobae Y, Maeshima M, Billion K, Kolukisaoglu üH, Schulz B, Martinoia E (2004). Arabidopsis immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters.Mol Biol Cell 15, 3393-3405.
doi: 10.1091/mbc.E03-11-0831 pmid: 15133126
[15] Geisler M, Kolukisaoglu Hü, Bouchard R, Billion K, Berger J, Saal B, Frangne N, Koncz-Kálmán Z, Koncz C, Dudler R, Blakeslee JJ, Murphy AS, Martinoia E, Schulz B (2003). TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19.Mol Biol Cell 14, 4238-4249.
doi: 10.1091/mbc.e02-10-0698
[16] Gollan PJ, Bhave M (2010). Genome-wide analysis of genes encoding FK506-binding proteins in rice.Plant Mol Biol 72, 1-16.
doi: 10.1007/s11103-009-9547-1 pmid: 19768557
[17] Gollan PJ, Ziemann M, Bhave M (2011). PPIase activities and interaction partners of FK506-binding proteins in the wheat thylakoid.Physiol Plant 143, 385-395.
doi: 10.1111/j.1399-3054.2011.01503.x pmid: 21848652
[18] Grebe M, Gadea J, Steinmann T, Kientz M, Rahfeld JU, Salchert K, Koncz C, Jürgens G (2000). A conserved domain of the Arabidopsis GNOM protein mediates subunit interaction and cyclophilin 5 binding.Plant Cell 12, 343-356.
doi: 10.2307/3870940 pmid: 10715321
[19] Gupta R, Mould RM, He ZY, Luan S (2002). A chloroplast FKBP interacts with and affects the accumulation of Rieske subunit of cytochrome bf complex. Proc Natl Acad Sci USA 99, 15806-15811.
doi: 10.1073/pnas.222550399 pmid: 12424338
[20] Harrar Y, Bellec Y, Bellini C, Faure JD (2003). Hormonal control of cell proliferation requires PASTICCINO genes. Plant Physiol 132, 1217-1227.
doi: 10.1104/pp.102.019026
[21] He ZY, Li LG, Luan S (2004). Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis.Plant Physiol 134, 1248-1267.
doi: 10.1104/pp.103.031005 pmid: 15047905
[22] Hennig L, Christner C, Kipping M, Schelbert B, Rücknagel KP, Grabley S, Küllertz G, Fischer G (1998). Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 37, 5953-5960.
doi: 10.1021/bi973162p pmid: 9558330
[23] Ingelsson B, Shapiguzov A, Kieselbach T, Vener AV (2009). Peptidyl-prolyl isomerase activity in chloroplast th- ylakoid lumen is a dispensable function of immunophilins in Arabidopsis thaliana. Plant Cell Physiol 50, 1801-1814.
[24] Ivanchenko MG, Zhu JS, Wang BJ, Medvecká E, Du YL, Azzarello E, Mancuso S, Megraw M, Filichkin S, Dubrovsky JG, Friml J, Geisler M (2015). The cyclophilin A DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation.Development 142, 712-721.
doi: 10.1242/dev.113225 pmid: 25617431
[25] Jackson K, S?ll D (1999). Mutations in a new Arabidopsis cyclophilin disrupt its interaction with protein phosphatase 2A.Mol Gen Genet 262, 830-838.
doi: 10.1007/s004380051147 pmid: 10628867
[26] Jing HW, Yang XL, Zhang J, Liu XH, Zheng HK, Dong GJ, Nian JQ, Feng J, Xia B, Qian Q, Li JY, Zuo JR (2015). Peptidyl-prolyl isomerization targets rice Aux/IAAs for pro- teasomal degradation during auxin signaling.Nat Commun 6, 7395.
doi: 10.1038/ncomms8395
[27] Kamphausen T, Fangh?nel J, Neumann D, Schulz B, Rahfeld JU (2002). Characterization of Arabidopsis tha- liana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J 32, 263-276.
[28] Kang B, Zhang ZC, Wang LL, Zheng LB, Mao WH, Li MF, Wu YR, Wu P, Mo XR (2013). OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation.Plant J 74, 86-97.
doi: 10.1111/tpj.2013.74.issue-1
[29] Karali D, Oxley D, Runions J, Ktistakis N, Farmaki T (2012). The Arabidopsis thaliana immunophilin ROF1 directly interacts with PI(3)P and PI(3, 5)P2 and affects germination under osmotic stress. PLoS One 7, e48241.
doi: 10.1371/journal.pone.0048241 pmid: 23133621
[30] Kaur G, Singh S, Singh H, Chawla M, Dutta T, Kaur H, Bender K, Snedden WA, Kapoor S, Pareek A, Singh P (2015). Characterization of peptidyl-prolyl cis-trans isomerase-and calmodulin-binding activity of a cytosolic Arab- idopsis thaliana cyclophilin AtCyp19-3. PLoS One 10, e0136692.
[31] Kong GH, Zhao Y, Jing MF, Huang J, Yang J, Xia YQ, Kong L, Ye WW, Xiong Q, Qiao YL, Dong SM, Ma WB, Wang YC (2015). The activation of Phytophthora effector Avr3b by plant cyclophilin is required for the nudix hydrolase activity of Avr3b. PLoS Pathog 11, e1005139.
doi: 10.1371/journal.ppat.1005139 pmid: 26317500
[32] Lee SS, Park HJ, Yoon DH, Kim BG, Ahn JC, Luan S, Cho HS (2015). Rice cyclophilin OsCYP18-2 is translocated to the nucleus by an interaction with SKIP and enhances drought tolerance in rice and Arabidopsis.Plant Cell Environ 38, 2071-2087.
doi: 10.1111/pce.12531 pmid: 25847193
[33] Li BB, Xu WZ, Xu YY, Zhang YY, Wang T, Bai Y, Han CG, Zhang AM, Xu ZH, Chong K (2010). Integrative study on proteomics, molecular physiology, and genetics reveals an accumulation of cyclophilin-like protein, TaCYP20-2, lead- ing to an increase of Rht protein and dwarf in a novel GA- insensitive mutant ( gaid) in wheat. J Proteome Res 9, 4242-4253.
doi: 10.1021/pr100560v pmid: 20527814
[34] Li H, He ZY, Lu GH, Lee SC, Alonso J, Ecker JR, Luan S (2007). A WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis.Plant Cell 19, 2403-2416.
doi: 10.1105/tpc.107.053579 pmid: 17704213
[35] Li H, Luan S (2010). AtFKBP53 is a histone chaperone required for repression of ribosomal RNA gene expression in Arabidopsis.Cell Res 20, 357-366.
doi: 10.1038/cr.2010.22
[36] Li H, Luan S (2011). The cyclophilin AtCYP71 interacts with CAF-1 and LHP1 and functions in multiple chromatin remodeling processes.Mol Plant 4, 748-758.
doi: 10.1093/mp/ssr036 pmid: 21596687
[37] Li M, Ma XQ, Chiang YH, Yadeta KA, Ding PF, Dong LS, Zhao Y, Li XM, Yu YF, Zhang L, Shen QH, Xia B, Coaker G, Liu D, Zhou JM (2014). Proline isomerization of the immune receptor-interacting protein RIN4 by a cyclophilin inhibits effector-triggered immunity in Arabidopsis.Cell Host Microbe 16, 473-483.
doi: 10.1016/j.chom.2014.09.007 pmid: 4768788
[38] Lighezan L, Meiri D, Breiman A, Neagu A (2013). Circular dichroism and the secondary structure of the ROF2 protein from Arabidopsis thaliana. J Biol Phys 39, 635-648.
[39] Lima A, Lima S, Wong JH, Phillips RS, Buchanan BB, Luan S (2006). A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II supercomplex in Arabidopsis thaliana. Proc Natl Acad Sci USA 103, 12631-12636.
doi: 10.1073/pnas.0605452103 pmid: 16894144
[40] Lu Y, Du JJ, Yu ZB, Peng JJ, Xu JN, Wang XY (2014). Identification of potential targets for thylakoid oxidoreductase AtVKOR/LTO1 in chloroplasts.Protein Pept Lett 22, 219-225.
doi: 10.2174/0929866521666141121153138 pmid: 254128991
[41] Ma XQ, Song L, Yang YX, Liu D (2013). A gain-of-function mutation in the ROC1 gene alters plant architecture in Ara- bidopsis. New Phytol 197, 751-762.
[42] Mainali HR, Chapman P, Dhaubhadel S (2014). Genome- wide analysis of Cyclophilin gene family in soybean(Glycine max). BMC Plant Biol 14, 282.
[43] Maris C, Dominguez C, Allain FH (2005). The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression.FEBS J 272, 2118-2131.
doi: 10.1111/j.1742-4658.2005.04653.x pmid: 2015853797
[44] Meiri D, Breiman A (2009). Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs.Plant J 59, 387-399.
doi: 10.1111/j.1365-313X.2009.03878.x pmid: 19366428
[45] Mokriakova MV, Pogorelko GV, Bruskin SA, Piruzian ES, Abdeeva IA (2014). The role of peptidyl-prolyl cis/trans isomerase genes of Arabidopsis thaliana in plant defense during the course of Xanthomonas campestris infection. Genetika 50, 157-166.
[46] Pai? AT, Fulgosi H (2016). Chloroplast immunophilins.Protoplasma 253, 249-258.
doi: 10.1007/s00709-015-0828-z
[47] Park HJ, Lee SS, You YN, Yoon DH, Kim BG, Ahn JC, Cho HS (2013a). A rice immunophilin gene, OsFKBP16-3, con- fers tolerance to environmental stress in Arabidopsis and rice. Int J Mol Sci 14, 5899-5919.
[48] Park SW, Li W, Viehhauser A, He B, Kim S, Nilsson AK, Andersson MX, Kittle JD, Ambavaram MM, Luan S, Esker AR, Tholl D, Cimini D, Ellerstr?m M, Coaker G, Mitchell TK, Pereira A, Dietz KJ, Lawrence CB (2013b). Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis.Proc Natl Acad Sci USA 110, 9559-9564.
doi: 10.1073/pnas.1218872110
[49] Peng LW, Fukao Y, Fujiwara M, Takami T, Shikanai T (2009). Efficient operation of NAD(P)H dehydrogenase re- quires supercomplex formation with photosystem I via minor LHCI in Arabidopsis.Plant Cell 21, 3623-3640.
doi: 10.1105/tpc.109.068791 pmid: 19903870
[50] Pogorelko GV, Mokryakova M, Fursova OV, Abdeeva I, Piruzian ES, Bruskin SA (2014). Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae. Gene 538, 12-22.
[51] Rahfeld JU, Schierhorn A, Mann K, Fischer G (1994). A novel peptidyl-prolyl cis/trans isomerase from Escherichia coli. FEBS Lett 343, 65-69.
[52] Rokka A, Aro EM, Herrmann RG, Andersson B, Vener AV (2000). Dephosphorylation of photosystem II reaction cen- ter proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature.Plant Physiol 123, 1525-1536.
doi: 10.1104/pp.123.4.1525
[53] Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J, Molino D, Lima A, Bach L, Morin H, Tellier F, Palauqui JC, Bellec Y, Renne C, Miquel M, DaCosta M, Vignard J, Rochat C, Markham JE, Moreau P, Napier J, Faure JD (2010). Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis.Plant Cell 22, 364-375.
doi: 10.1105/tpc.109.071209 pmid: 20145257
[54] Ruan SL, Ma HS, Wang SH, Fu YP, Xin Y, Liu WZ, Wang F, Tong JX, Wang SZ, Chen HZ (2011). Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice ( Oryza sativa L.) seedlings when overexpressed. BMC Plant Biol 11, 34.
doi: 10.1186/1471-2229-11-34 pmid: 3050798
[55] Schiene-Fischer C (2015). Multidomain peptidyl prolyl cis/ trans isomerases. Biochim Biophys Acta 1850, 2005-2016.
doi: 10.1016/j.bbagen.2014.11.012 pmid: 25445709
[56] Seok MS, You YN, Park HJ, Lee SS, Aigen F, Luan S, Ahn JC, Cho HS (2014). AtFKBP16-1, a chloroplast lumenal immunophilin, mediates response to photosynthetic stress by regulating PsaL stability.Plant Physiol 150, 620-631.
doi: 10.1111/ppl.12116 pmid: 24124981
[57] Sirpi? S, Holmstr?m M, Battchikova N, Aro EM (2009). AtCYP20-2 is an auxiliary protein of the chloroplast NAD(P)H dehydrogenase complex.FEBS Lett 583, 2355-2358.
doi: 10.1016/j.febslet.2009.06.031 pmid: 19549520
[58] Sirpi? S, Khrouchtchova A, Allahverdiyeva Y, Hansson M, Fristedt R, Vener AV, Scheller HV, Jensen PE, Haldrup A, Aro EM (2008). AtCYP38 ensures early biogenesis, correct assembly and sustenance of photosystem II.Plant J 55, 639-651.
doi: 10.1111/j.1365-313X.2008.03532.x pmid: 18445132
[59] Sivils JC, Storer CL, Galigniana MD, Cox MB (2011). Regulation of steroid hormone receptor function by the 52-kDa FK506-binding protein (FKBP52).Curr Opin Phar- macol 11, 314-319.
doi: 10.1016/j.coph.2011.03.010 pmid: 21511531
[60] Smyczynski C, Roudier F, Gissot L, Vaillant E, Grandjean O, Morin H, Masson T, Bellec Y, Geelen D, Faure JD (2006). The C terminus of the immunophilin PASTICCI- NO1 is required for plant development and for interaction with a NAC-like transcription factor.J Biol Chem 281, 25475-25484.
doi: 10.1074/jbc.M601815200 pmid: 16803883
[61] Spiegelman Z, Ham BK, Zhang ZL, Toal TW, Brady SM, Zheng Y, Fei ZJ, Lucas WJ, Wolf S (2015). A tomato phloem-mobile protein regulates the shoot-to-root ratio by mediating the auxin response in distant organs.Plant J 83, 853-863.
doi: 10.1111/tpj.12932 pmid: 26173789
[62] Trivedi DK, Yadav S, Vaid N, Tuteja N (2012). Genome wide analysis of Cyclophilin gene family from rice and Ara- bidopsis and its comparison with yeast. Plant Signal Behav 7, 1653-1666.
[63] Trupkin SA, Mora-García S, Casal JJ (2012). The cyclophilin ROC1 links phytochrome and cryptochrome to bras- sinosteroid sensitivity.Plant J 71, 712-723.
doi: 10.1111/j.1365-313X.2012.05013.x pmid: 22463079
[64] Vasudevan D, Fu AG, Luan S, Swaminathan K (2012). Crystal structure of Arabidopsis cyclophilin38 reveals a previously uncharacterized immunophilin fold and a possible autoinhibitory mechanism.Plant Cell 24, 2666-2674.
doi: 10.1105/tpc.111.093781 pmid: 22706283
[65] Vasudevan D, Gopalan G, Kumar A, Garcia VJ, Luan S, Swaminathan K (2015). Plant immunophilins: a review of their structure-function relationship.Biochim Biophys Acta 1850, 2145-2158.
doi: 10.1016/j.bbagen.2014.12.017 pmid: 25529299
[66] Vespa L, Vachon G, Berger F, Perazza D, Faure JD, Herzog M (2004). The immunophilin-interacting protein AtFIP37 from Arabidopsis is essential for plant development and is involved in trichome endoreduplication.Plant Physiol 134, 1283-1292.
doi: 10.1104/pp.103.028050
[67] Voinnet O (2009). Origin, biogenesis, and activity of plant microRNAs.Cell 136, 669-687.
doi: 10.1016/j.cell.2009.01.046 pmid: 19239888
[68] Wang B, Bailly A, Zwiewka M, Henrichs S, Azzarello E, Mancuso S, Maeshima M, Friml J, Schulz A, Geisler M (2013). Arabidopsis TWISTED DWARF1 functionally inter- acts with auxin exporter ABCB1 on the root plasma membrane. Plant Cell 25, 202-214.
doi: 10.1105/tpc.112.105999 pmid: 23321285
[69] Wang P, Li XZ, Cui HR, Feng YG, Wang XY (2014). Identification and functional analysis of a novel parvulin-type peptidyl-prolyl isomerase from Gossypium hirsutum. Plant Physiol Biochem 76, 58-66.
doi: 10.1016/j.plaphy.2013.12.020 pmid: 24468661
[70] Wang Y, Han R, Zhang W, Yuan Y, Zhang X, Long Y, Mi H (2008). Human CyP33 binds specifically to mRNA and binding stimulates PPIase activity of hCyP33.FEBS Lett 582, 835-839.
doi: 10.1016/j.febslet.2008.01.055 pmid: 18258190
[71] Wang Y, Liu C, Yang DW, Yu H, Liou YC (2010). Pin1At encoding a peptidyl-prolyl cis/trans isomerase regulates flowering time in Arabidopsis. Mol Cell 37, 112-122.
[72] Wang YQ, Zeng LZ, Xing D (2015). ROS-mediated enhanced transcription of CYP38 promotes the plant tolerance to high light stress by suppressing GTPase activation of PsbO2.Front Plant Sci 6, 777.
doi: 10.3389/fpls.2015.00777 pmid: 4586435
[73] Wu GS, Otegui MS, Spalding EP (2010). The ER-Localized TWD1 immunophilin is necessary for localization of multidrug resistance-like proteins required for polar auxin transport in Arabidopsis roots.Plant Cell 22, 3295-3304.
doi: 10.1105/tpc.110.078360 pmid: 20971896
[74] Xi WY, Gong XM, Yang QY, Yu H, Liou YC (2016). Pin1At regulates PIN1 polar localization and root gravitropism.Nat Commun 7, 10430.
doi: 10.1038/ncomms10430 pmid: 26791759
[75] Yoon DH, Lee SS, Park HJ, Lyu JI, Chong WS, Liu JR, Kim BG, Ahn JC, Cho HS (2016). Overexpression of OsCYP19-4 increases tolerance to cold stress and enhances grain yield in rice ( Oryza sativa). J Exp Bot 67, 69-82.
[76] Yu YL, Li YZ, Huang GX, Meng ZD, Zhang D, Wei J, Yan K, Zheng CC, Zhang YL (2011). PwHAP5, a CCAAT-binding transcription factor, interacts with PwFKBP12 and plays a role in pollen tube growth orientation inPicea wilsonii. J Exp Bot 62, 4805-4817.
doi: 10.1093/jxb/err120 pmid: 3192995
[77] Zhang YY, Li BB, Xu YY, Li H, Li SS, Zhang DJ, Mao ZW, Guo SY, Yang CH, Weng YX, Chong K (2013). The cyclophilin CYP20-2 modulates the conformation of BRAS- SINAZOLE-RESISTANT1, which binds the promoter of FLOWERING LOCUS D to regulate flowering in Arabidopsis. Plant Cell 25, 2504-2521.
doi: 10.1105/tpc.113.110296 pmid: 23897924
[78] Zhao BL, Lv MH, Feng ZX, Campbell T, Liscum E, Li J (2016). TWISTED DWARF 1 associates with BRASSINOSTEROID-INSENSITIVE 1 to regulate early events of the brassinosteroid signaling pathway.Mol Plant 9, 582-592.
doi: 10.1016/j.molp.2016.01.007 pmid: 26802250
[79] Zheng HK, Li SJ, Ren B, Zhang J, Ichii M, Taketa S, Tao YZ, Zuo JR, Wang H (2013). LATERAL ROOTLESS2, a cyclophilin protein, regulates lateral root initiation and au- xin signaling pathway in rice.Mol Plant 6, 1719-1721.
doi: 10.1093/mp/sst052 pmid: 23501875
[80] Zhu JS, Bailly A, Zwiewka M, Sovero V, Di Donato M, Ge P, Oehri J, Aryal B, Hao PC, Linnert M, Burgardt NI, Lücke C, Weiwad M, Michel M, Weiergr?ber OH, Pollmann S, Azzarello E, Mancuso S, Ferro N, Fukao Y, Hoffmann C, Wedlich-S?ldner R, Friml J, Thomas C, Geisler M (2016). TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics.Plant Cell 28, 930-948.
doi: 10.1105/tpc.15.00726 pmid: 27053424
[81] Zhu JS, Geisler M (2015). Keeping it all together: auxin-actin crosstalk in plant development.J Exp Bot 66, 4983-4998.
doi: 10.1093/jxb/erv308 pmid: 26085676
[1] Zhang Lu,He Xinhua. Nitrogen Utilization Mechanism in C3 and C4 Plants [J]. Chin Bull Bot, 2020, 55(2): 228-239.
[2] Wang Jindong,Zhou Yu,Yu Jiawen,Fan Xiaolei,Zhang Changquan,Li Qianfeng,Liu Qiaoquan. Advances in the Regulation of Plant Growth and Development and Stress Response by miR172-AP2 Module [J]. Chin Bull Bot, 2020, 55(2): 205-215.
[3] Wang Menglong,Peng Xiaoqun,Chen Zhufeng,Tang Xiaoyan. Research Advances on Lectin Receptor-like Kinases in Plants [J]. Chin Bull Bot, 2020, 55(1): 96-105.
[4] Guo Qianqian, Zhou Wenbin. Advances in the Mechanism Underlying Plant Response to Stress Combination [J]. Chin Bull Bot, 2019, 54(5): 662-673.
[5] Fan Yegeng, Qiu Lihang, Huang Xing, Zhou Huiwen, Gan Chongkun, Li Yangrui, Yang Rongzhong, Wu Jianming, Chen Rongfa. Expression Analysis of Key Genes in Gibberellin Biosynthesis and Related Phytohormonal Dynamics During Sugarcane Internode Elongation [J]. Chin Bull Bot, 2019, 54(4): 486-496.
[6] Wang Xiaolong, Liu Fengzhi, Shi Xiangbin, Wang Xiaodi, Ji Xiaohao, Wang Zhiqiang, Wang Baoliang, Zheng Xiaocui, Wang Haibo. Evolution and Expression of NCED Family Genes in Vitis vinifera [J]. Chin Bull Bot, 2019, 54(4): 474-485.
[7] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[8] Hua Wenping,Chen Chen,Zhi Yuan,Liu Li,Wang Zhezhi,Li Cuiqin. Effect of SmGGPPS2 Expression on Tanshinones Biosynthesis in Salvia miltiorrhiza [J]. Chin Bull Bot, 2019, 54(2): 217-226.
[9] LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898.
[10] Liu Ming, Liu Xia, Sun Ran, Li Yuling, Du Kejiu. Polychlorinated Biphenyls Promotes Differentiation on Adventitious Roots of Populous tomentosa [J]. Chin Bull Bot, 2018, 53(6): 764-772.
[11] Du Kangxi, Shen Wenhui, Dong Aiwu. Advances in Epigenetic Regulation of Abiotic Stress Response in Plants [J]. Chin Bull Bot, 2018, 53(5): 581-593.
[12] CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plan Ecolo, 2018, 42(5): 585-594.
[13] Wei Hua, Wang Yan, Liu Baohui, Wang Lei. Deciphering the Underlying Mechanism of the Plant Circadian System and Its Regulation on Plant Growth and Development [J]. Chin Bull Bot, 2018, 53(4): 456-467.
[14] Yanqun Li, Hong Wu. The Research Progress of the Correlation Between Growth Development and Dynamic Accumulation of the Effective Components in Medicinal Plants [J]. Chin Bull Bot, 2018, 53(3): 293-304.
[15] ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment [J]. Chin J Plan Ecolo, 2018, 42(2): 229-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chin Bull Bot, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chin Bull Bot, 1999, 16(04): 439 -443 .
[5] CHEN Shao-Liang LI Jin-Ke BI Wang-Fu WANG Sha-Sheng. Genotypic Variation in Accumulation of Salt Ions, Betaine and Sugars in Poplar Under Conditions of Salt Stress[J]. Chin Bull Bot, 2001, 18(05): 587 -596 .
[6] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[7] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[8] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[9] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .
[10] Li Jiandong, Zheng Huiying. ?ber die Anwendung der Braun-Blanquet's Methode in der Steppen-Untersuchung[J]. Chin J Plan Ecolo, 1983, 7(3): 186 -203 .