植物学报 ›› 2020, Vol. 55 ›› Issue (1): 96-105.doi: 10.11983/CBB19130

• 专题论坛 • 上一篇    下一篇

植物凝集素类受体蛋白激酶研究进展

王梦龙1,彭小群1,陈竹锋2,唐晓艳1,*()   

  1. 1华南师范大学生命科学学院, 广东省植物发育生物工程重点实验室, 广州 510631
    2深圳市作物分子设计育种研究院, 深圳 518107
  • 收稿日期:2019-07-10 接受日期:2019-09-24 出版日期:2020-01-01 发布日期:2019-12-20
  • 通讯作者: 唐晓艳 E-mail:txy@frontier-ag.com
  • 基金资助:
    广东省自然科学基金(No.2018B030308008);广东省自然科学基金(No.2017A030310500);广东省自然科学基金(No.2017A03013104);中国博士后科学基金(2019M652938)

Research Advances on Lectin Receptor-like Kinases in Plants

Wang Menglong1,Peng Xiaoqun1,Chen Zhufeng2,Tang Xiaoyan1,*()   

  1. 1Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
    2Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
  • Received:2019-07-10 Accepted:2019-09-24 Online:2020-01-01 Published:2019-12-20
  • Contact: Tang Xiaoyan E-mail:txy@frontier-ag.com

摘要:

自然界中植物的生长发育受到各种环境变化的影响。为了响应外界各种环境条件, 植物演化出一系列识别和传递环境信号的蛋白分子, 其中比较典型的是植物细胞质膜上的类受体蛋白激酶(RLKs)。凝集素类受体蛋白激酶(LecRLKs)是类受体蛋白激酶家族中的一个亚族, 它主要包含3个结构域: 细胞外凝集素结构域、跨膜结构域和细胞内激酶结构域。根据细胞外凝集素结构域的不同, LecRLKs可分为3种不同类型: L、G和C型。近年来, 研究表明LecRLKs在植物生物/非生物胁迫和发育调控中发挥非常重要的作用。该文综述了植物凝集素类受体蛋白激酶的研究历史、结构特点、分类以及生物学功能, 并重点阐述凝集素类受体蛋白激酶在植物生物/非生物胁迫响应和调控发育方面的功能。对不同类型和不同功能的植物凝集素类受体蛋白激酶进行阐述将有利于对该类蛋白开展功能研究, 并为作物改良提供有益借鉴。

关键词: 类受体蛋白激酶, 凝集素类受体蛋白激酶, 生物/非生物胁迫, 植物生长发育

Abstract:

Plant growth and development are affected by various environmental factors. In response to various environmental changes, plants have evolved a series of signal recognition and transduction proteins, such as the plasma membrane-localized receptor-like kinases (RLKs), to cope with the environmental conditions. The lectin receptor-like kinases (LecRLKs) are a subfamily of RLKs that contain three structural domains: the extracellular lectin domain, transmembrane domain, and the intracellular kinase domain. Based on the structural difference of the extracellular lectin domain, LecRLKs are classified into three subclasses: L-, G-, and C-type. Recent studies have shown that LecRLKs play a vital role in plant development and biotic/abiotic stress responses. In this review, we discribe the research history, structural features and classification, and biological functions of LecRLKs, and emphasize on the functions of LecRLKs in plants in response to biotic/abiotic stresses and in regulating development. This review provides a view for future functional study on LecRLKs and crop improvement by elaborating different types and functions of LecRLKs.

Key words: receptor-like kinase, lectin receptor-like kinase, biotic/abiotic stress, plant growth and development

表1

植物中已被鉴定的凝集素类受体蛋白激酶基因及其功能"

基因 物种 类型 功能 参考文献
ZmPK1 玉米(Zea mays) G型 参与调控花粉与柱头之间的识别 Walker and Zhang, 1990
LecRK-V.5 拟南芥(Arabidopsis thaliana) L型 参与低聚糖和激素信号转导、细胞分裂、机械损伤信号调控、ABA响应和抗病 Newman et al., 1994; Hervé et al., 1996; Riou et al., 2002; Desclos- Theveniau et al., 2012
PnLPK 黑杨(Populus nigra) L型 参与调控机械损伤信号 Nishiguchi et al., 2002
LecRK-I.3 拟南芥(A. thaliana) L型 参与调控盐胁迫信号 He et al., 2004
GhLecRK 棉花(Gossypium hirsutum) L型 参与纤维发育 Zuo et al., 2004
Pi-d2 水稻(Oryza sativa) G型 参与抗稻瘟病菌小种ZB15 Chen et al., 2006
LecRK-IV.2 拟南芥(A. thaliana) L型 参与花粉发育 Wan et al., 2008
LecRK-VI.2 拟南芥(A. thaliana) L型 参与ABA对种子的萌发作用和抗病 Xin et al., 2009; Singh et al., 2012
LecRK-VI.3 拟南芥(A. thaliana) L型 参与ABA对种子的萌发作用 Xin et al., 2009
LecRK-VI.4 拟南芥(A. thaliana) L型 参与ABA对种子的萌发作用 Xin et al., 2009
LecRK-V.2 拟南芥(A. thaliana) L型 参与调控植物早期发育阶段盐信号 Deng et al., 2009
LecRK1 野生烟草(Nicotiana attenuate) G型 参与烟草天蛾诱导的防御反应 Bonaventure, 2011; Gilardoni et al., 2011
Nt-Sd-RLK 烟草(N. tabacum) G型 参与脂多糖免疫信号的识别和防御 Sanabria et al., 2012
LecRK-I.8 拟南芥(A. thaliana) L型 参与昆虫卵衍生诱导物的识别 Gouhier-Darimont et al., 2013
GsSRK 野大豆(Glycine soja) G型 参与调控植物耐盐性 Sun et al., 2013
LecRK7 水稻(O. sativa) L型 参与花粉发育 毕真真, 2013
LecRK-I.9 拟南芥(A. thaliana) L型 参与识别ATP与抗逆 Choi et al., 2014
SIT1 水稻(O. sativa) L型 参与调控盐胁迫信号 Li et al., 2014
LORE 拟南芥(A. thaliana) G型 参与脂多糖识别引起的免疫反应 Ranf et al., 2015
LecRK-IX.1 拟南芥(A. thaliana) L型 参与抗疫霉菌 Wang et al., 2015
LecRK-IX.2 拟南芥(A. thaliana) L型 参与抗疫霉菌、SA响应和调控细胞死亡 Wang et al., 2015; Luo et al., 2017
PsLecRLK 豌豆(Pisum sativum) L型 参与调控植物耐盐性 Vaid et al., 2015
SDS2 水稻(O. sativa) G型 参与程序性细胞死亡和抗稻瘟病菌 Fan et al., 2018
PbLRK138 豆梨(Pyrus calleryana) L型 参与诱导细胞死亡和抗盐胁迫 Ma et al., 2018
LecRK-VI.4 拟南芥(A. thaliana) L型 参与ABA介导的气孔开闭 Zhang et al., 2019
PtLecRLK1 毛果杨(Populus trichocarpa) G型 参与植物-真菌共生互作 Labbé et al., 2019

图1

3种凝集素类受体蛋白激酶结构模式"

图2

植物凝集素类受体蛋白激酶生理功能分类"

[1] 毕真真 (2013). 水稻OsL-LecRK7基因的功能研究. 硕士论文. 新乡: 河南师范大学. pp. 1-82.
[2] Barre A, Hervé C, Lescure B, Rougé R (2002). Lectin receptor kinases in plants. Crit Rev Plant Sci 21, 379-399.
[3] Becraft PW, Stinard PS, McCarty DR (1996). CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273, 1406-1409.
[4] Bellande K, Bono JJ, Savelli B, Jamet E, Canut H (2017). Plant lectins and lectin receptor-like kinases: how do they sense the outside? Int J Mol Sci 18, 1164.
[5] Bonaventure G (2011). The Nicotiana attenuata lectin receptor kinase 1 is involved in the perception of insect feeding. Plant Signal Behav 6, 2060-2063.
[6] Bouwmeester K, Govers F (2009). Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J Exp Bot 60, 4383-4396.
[7] Brewin NJ, Kardailsky IV (1997). Legume lectins and nodulation by Rhizobium. Trends Plant Sci 2, 92-98.
[8] Brill LM, Evans CJ, Hirsch AM (2001). Expression of MsLEC1- and MsLEC2-antisense genes in alfalfa plant lines causes severe embryogenic, developmental and reproductive abnormalities. Plant J 25, 453-461.
[9] Cambi A, Koopman M, Figdor CG (2005). How C-type lectins detect pathogens. Cell Microbiol 7, 481-488.
[10] Chen XW, Shang JJ, Chen DX, Lei CL, Zou Y, Zhai WX, Liu GZ, Xu JC, Ling ZH, Cao G, Ma BT, Wang YP, Zhao XF, Li SG, Zhu LH (2006). A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46, 794-804.
[11] Choi J, Tanaka K, Cao YR, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G (2014). Identification of a plant receptor for extracellular ATP. Science 343, 290-294.
[12] Deng KQ, Wang QM, Zeng JX, Guo XH, Zhao XY, Tang DY, Liu XM (2009). A lectin receptor kinase positively regulates ABA response during seed germination and is involved in salt and osmotic stress response. J Plant Biol 52, 493-500.
[13] Desclos-Theveniau M, Arnaud D, Huang TY, Lin GJC, Chen WY, Lin YC, Zimmerli L (2012). The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathog 8, e1002513.
[14] Edelman GM, Wang JL (1978). Binding and functional properties of concanavalin A and its derivatives. III. Interactions with indoleacetic acid and other hydrophobic ligands. J Biol Chem 253, 3016-3022.
[15] Epstein J, Eichbaum Q, Sheriff S, Ezekowitz RAB (1996). The collectins in innate immunity. Curr Opin Immunol 8, 29-35.
[16] Fan JB, Bai PF, Ning YS, Wang JY, Shi XT, Xiong YH, Zhang K, He F, Zhang CY, Wang RY, Meng XZ, Zhou JG, Wang M, Shirsekar G, Park CH, Bellizzi M, Liu WD, Jeon JS, Xia Y, Shan LB, Wang GL (2018). The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice. Cell Host Microbe 23, 498-510.
[17] Gilardoni PA, Hettenhausen C, Baldwin IT, Bonaventure G (2011). Nicotiana attenuata LECTIN RECEPTOR KINASE 1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. Plant Cell 23, 3512-3532.
[18] Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong JP, Miguel T, Paszkowski U, Zhang SP, Colbert M, Sun WL, Chen LL, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92-100.
[19] Gouhier-Darimont C, Schmiesing A, Bonnet C, Lassueur S, Reymond P (2013). Signaling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity. J Exp Bot 64, 665-674.
[20] Hawgood S, Akiyama J, Brown C, Allen L, Li G, Poulain FR (2001). GM-CSF mediates alveolar macrophage proliferation and type II cell hypertrophy in SP-D gene-targeted mice. Am J Physiol Lung Cell Mol Physiol 280, L1148-L1156.
[21] He XJ, Zhang ZG, Yan DQ, Zhang JS, Chen SY (2004). A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase. Theor Appl Genet 109, 377-383.
[22] Hervé C, dabos P, Galaud JP, Rougé P, Lescure B (1996). Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with an extracellular lectin-like domain. J Mol Biol 258, 778-788.
[23] Hervé C, Serres J, Dabos P, Canut H, Barre A, Rougé P, Lescure B (1999). Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins. Plant Mol Biol 39, 671-682.
[24] Hu X, Reddy ASN (1997). Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein. Plant Mol Biol 34, 949-959.
[25] Hunter T (1991). Protein Kinase Classication. Methods Enzymol 200, 3-37.
[26] Joshi A, Dang HD, Vaid N, Tuteja N (2010). Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta. Glycoconj J 27, 133-150.
[27] Kanzaki H, Saitoh H, Takahashi Y, Berberich T, Ito A, Kamoun S, Terauchi R (2008). NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta 228, 977-987.
[28] Kobe B, Kajava AV (2001). The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11, 725-732.
[29] Kusaba M, Dwyer K, Hendershot J, Vrebalov J, Nasrallah JB, Nasrallah ME (2001). Self-incompatibility in the genus Arabidopsis: characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana. Plant Cell 13, 627-643.
[30] Labbé J, Muchero W, Czarnecki O, Wang J, Wang XP, Bryan AC, Zheng KJ, Yang YL, Xie M, Zhang J, Wang DF, Meidl P, Wang HM, Morrell-Falvey JL, Cope KR, Maia LGS, Ané JM, Mewalal R, Jawdy SS, Gunter LE, Schackwitz W, Martin J, Le Tacon F, Li T, Zhang ZH, Ranjan P, Lindquist E, Yang XH, Jacobson DA, Tschaplinski TJ, Barry K, Schmutz J, Chen JG, Tuskan GA (2019). Mediation of plant-mycorrhizal interaction by a lectin receptor-like kinase. Nat Plants 5, 676-680.
[31] Li CH, Wang G, Zhao JL, Zhang LQ, Ai LF, Han YF, Sun DY, Zhang SW, Sun Y (2014). The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell 26, 2538-2553.
[32] Li HY, Gray JE (1997). Pollination-enhanced expression of a receptor-like protein kinase related gene in tobacco styles. Plant Mol Biol 33, 653-665.
[33] Loris R (2002). Principles of structures of animal and plant lectins. Biochim Biophys Acta 1572, 198-208.
[34] Luo XM, Xu N, Huang JK, Gao F, Zou HS, Boudsocq M, Coaker G, Liu J (2017). A lectin receptor-like kinase mediates pattern-triggered salicylic acid signaling. Plant Physiol 174, 2501-2514.
[35] Ma N, Liu CX, Li H, Wang JY, Zhang BL, Lin J, Chang YH (2018). Genome-wide identification of lectin receptor kinases in pear: functional characterization of the L-type LecRLK gene PbLRK138. Gene 661, 11-21.
[36] Morillo SA, Tax FE (2006). Functional analysis of receptor-like kinases in monocots and dicots. Curr Opin Plant Biol 9, 460-469.
[37] Naithani S, Chookajorn T, Ripoll DR, Nasrallah JB (2007). Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. Proc Natl Acad Sci USA 104, 12211-12216.
[38] Navarro-Gochicoa MT, Camut S, Timmers ACJ, Niebel A, Hervé C, Boutet E, Bono JJ, Imberty A, Cullimore JV (2003). Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula. Structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti. Plant Physiol 133, 1893-1910.
[39] Newman T, de Bruijn FJ, Green P, Keegstra K, Kende H, McIntosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M, Retzel E, Somerville C (1994). Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol 106, 1241-1255.
[40] Nishiguchi M, Yoshida K, Sumizono T, Tazaki K (2002). A receptor-like protein kinase with a lectin-like domain from Lombardy poplar: gene expression in response to wounding and characterization of phosphorylation activity. Mol Genet Genomics 267, 506-514.
[41] Peumans WJ, van Damme EJM (1995). The role of lectins in plant defence. Histochem J 27, 253-271.
[42] Ranf S, Gisch N, Schäffer M, Illig T, Westphal L, Knirel YA, Smánchez-Carballo PM, Zähringer U, Hückelhoven R, Lee J, Scheel D (2015). A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol 16, 426-433.
[43] Riou C, Hervé C, Pacquit V, Dabos P, Lescure B (2002). Expression of an Arabidopsis lectin kinase receptor gene, lecRK-a1, is induced during senescence, wounding and in response to oligogalacturonic acids. Plant Physiol Biochem 40, 431-438.
[44] Rüdiger H, Gabius HJ (2001). Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18, 589-613.
[45] Sanabria NM, van Heerden H, Dubery IA (2012). Molecular characterisation and regulation of a Nicotiana tabacum S- domain receptor-like kinase gene induced during an early rapid response to lipopolysaccharides. Gene 501, 39-48.
[46] Sherman-Broyles S, Boggs N, Farkas A, Liu P, Vrebalov J, Nasrallah ME, Nasrallah JB (2007). S locus genes and the evolution of self-fertility in Arabidopsis thaliana. Plant Cell 19, 94-106.
[47] Shiu SH, Bleecker AB (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98, 10763-10768.
[48] Singh P, Kuo YC, Mishra S, Tsai CH, Chien CC, Chen CW, Desclos-Theveniau M, Chu PW, Schulze B, Chinchilla D, Boller T, Zimmerli L (2012). The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell 24, 1256-1270.
[49] Sun XL, Yu QY, Tang LL, Ji W, Bai X, Cai H, Liu XF, Ding XD, Zhu YM (2013). GsSRK, a G-type lectin S-receptor- like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. J Plant Physiol 170, 505-515.
[50] Tanksley SD, Loaiza-Figueroa F (1985). Gametophytic self-incompatibility is controlled by a single major locus on chromosome 1 in Lycopersicon peruvianum. Proc Natl Acad Sci USA 82, 5093-5096.
[51] Tordai H, Bányai L, Patthy L (1999). The PAN module: the N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins. FEBS Lett 461, 63-67.
[52] Vaid N, Macovei A, Tuteja N (2013). Knights in action: lectin receptor-like kinases in plant development and stress responses. Mol Plant 6, 1405-1418.
[53] Vaid N, Pandey P, Srivastava VK, Tuteja N (2015). Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. Plant Mol Biol 88, 193-206.
[54] Vaid N, Pandey PK, Tuteja N (2012). Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. Plant Mol Biol 80, 365-388.
[55] Walker JC (1994). Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol 26, 1599-1609.
[56] Walker JC, Zhang R (1990). Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature 345, 743-746.
[57] Wan JR, Patel A, Mathieu M, Kim SY, Xu D, Stacey G (2008). A lectin receptor-like kinase is required for pollen development in Arabidopsis. Plant Mol Biol 67, 469-482.
[58] Wang GL, Ruan DL, Song WY, Sideris S, Chen LL, Pi LY, Zhang SP, Zhang Z, Fauquet C, Gaut BS, Whalen MC, Ronald PC (1998). Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10, 765-779.
[59] Wang Y, Cordewener JHG, America AHP, Shan WX, Bouwmeester K, Govers F (2015). Arabidopsis lectin receptor kinases LecRK-IX.1 and LecRK-IX.2 are functional analogs in regulating Phytophthora resistance and plant cell death. Mol Plant Microbe Interact 28, 1032-1048.
[60] Xin ZY, Wang A, Yang GH, Gao P, Zheng ZL (2009). The Arabidopsis A4 subfamily of lectin receptor kinases negatively regulates abscisic acid response in seed germination. Plant Physiol 149, 434-444.
[61] Yu J, Hu SN, Wang J, Wong GKS, Li SG, Liu B, Deng YJ, Dai L, Zhou Y, Zhang XQ, Cao ML, Liu J, Sun JD, Tang JB, Chen YJ, Huang XB, Lin W, Ye C, Tong W, Cong LJ, Geng JN, Han YJ, Li L, Li W, Hu GQ, Huang XG, Li WJ, Li J, Liu ZW, Li L, Liu JP, Qi QH, Liu JS, Li L, Li T, Wang XG, Lu H, Wu TT, Zhu M, Ni PX, Han H, Dong W, Ren XY, Feng XL, Cui P, Li XR, Wang H, Xu X, Zhai WX, Xu Z, Zhang JS, He SJ, Zhang JG, Xu JC, Zhang KL, Zheng XW, Dong JH, Zeng WY, Tao L, Ye J, Tan J, Ren XD, Chen XW, He J, Liu DF, Tian W, Tian CG, Xia HA, Bao QY, Li G, Gao H, Cao T, Wang J, Zhao WM, Li P, Chen W, Wang XD, Zhang Y, Hu JF, Wang J, Liu S, Yang J, Zhang GY, Xiong YQ, Li ZJ, Mao L, Zhou CS, Zhu Z, Chen RS, Hao BL, Zheng WM, Chen SY, Guo W, Li GJ, Liu SQ, Tao M, Wang J, Zhu LH, Yuan LP, Yang HM (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92.
[62] Zhang C, Guo XH, Xie HL, Li JY, Liu XQ, Zhu BD, Liu SC, Li HL, Li ML, He MQ, Chen P (2019). Quantitative phosphoproteomics of lectin receptor-like kinase VI.4 dependent abscisic acid response in Arabidopsis thaliana. Physiol Plant 165, 728-745.
[63] Zuo KJ, Zhao JY, Wang J, Sun XF, Tan KX (2004). Molecular cloning and characterization of GhLecRK, a novel kinase gene with lectin-like domain from Gossypium hirsutum. DNA Seq 15, 58-65.
[1] 王劲东 周豫 余佳雯 范晓磊 张昌泉 李钱峰 刘巧泉. miR172-AP2模块调控植物生长发育的研究进展[J]. 植物学报, 2020, 55(2): 0-0.
[2] 郭倩倩, 周文彬. 植物响应联合胁迫机制的研究进展[J]. 植物学报, 2019, 54(5): 662-673.
[3] 韩丹璐, 赖建彬, 阳成伟. SUMO E3连接酶在植物生长发育中的功能研究进展[J]. 植物学报, 2018, 53(2): 175-184.
[4] 任鸿雁, 王莉, 马青秀, 吴光. 油菜素内酯生物合成途径的研究进展[J]. 植物学报, 2015, 50(6): 768-778.
[5] 张桂芝, 林继山, 李燕洁, 侯丙凯. 植物激素糖基化修饰研究进展[J]. 植物学报, 2014, 49(5): 515-523.
[6] 宋丽 李李 储昭庆 薛红卫. 拟南芥油菜素内酯信号转导研究进展[J]. 植物学报, 2006, 23(5): 556-563.
[7] 储昭庆 李李 宋丽 薛红卫. 油菜素内酯生物合成与功能的研究进展[J]. 植物学报, 2006, 23(5): 543-555.
[8] 梁宇 高玉葆. 内生真菌对植物生长发育及抗逆性的影响[J]. 植物学报, 2000, 17(01): 52-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张谧 谢宗强. 21世纪的生态学研究前沿[J]. 植物学报, 2002, 19(01): 121 -124 .
[2] 张士功 高吉寅 宋景芝. 甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响[J]. 植物学报, 1999, 16(04): 429 -432 .
[3] 何维明 钟章成. 土壤肥力对绞股蓝种群行为的影响[J]. 植物学报, 1999, 16(04): 425 -428 .
[4] 佘朝文 宋运淳 刘立华. 节节麦细胞不同分裂时期和阶段的G-带核型及其变动性分析[J]. 植物学报, 2001, 18(06): 727 -734 .
[5] 杨贵军, 黄文江, 王纪华, 邢著荣. 多源多角度遥感数据反演森林叶面积指数方法[J]. 植物学报, 2010, 45(05): 566 -578 .
[6] 陈曼, 涂艺声, 叶丽婻, 杨碧芸. 氨基酸对蛇足石杉叶状体增殖及石杉碱甲积累的影响[J]. 植物学报, 2017, 52(2): 218 -224 .
[7] 商业绯, 李明, 丁博, 牛浩, 杨振宁, 陈小强, 曹高燚, 谢晓东. 生长素调控植物气孔发育的研究进展[J]. 植物学报, 2017, 52(2): 235 -240 .
[8] 崔骁勇, 杜占池, 王艳芬. 内蒙古半干旱草原区沙地植物群落光合特征的动态研究[J]. 植物生态学报, 2000, 24(5): 541 -546 .
[9] 李维, 张亚黎, 胡渊渊, 杨美森, 吴洁, 张旺锋. 田间条件下棉花幼叶光合特性及光保护机制[J]. 植物生态学报, 2012, 36(7): 662 -670 .
[10] 胡宝忠, 刘娣, 胡国富, 张阿英, 姜述君. 中国紫花苜蓿地方品种随机扩增多态DNA的研究[J]. 植物生态学报, 2000, 24(6): 697 -701 .