植物学报 ›› 2020, Vol. 55 ›› Issue (4): 442-456.DOI: 10.11983/CBB19157
收稿日期:
2019-08-16
接受日期:
2020-03-23
出版日期:
2020-07-01
发布日期:
2020-05-21
通讯作者:
陈赢男
基金资助:
Chenyang Yan1,2,Yingnan Chen1,2,*()
Received:
2019-08-16
Accepted:
2020-03-23
Online:
2020-07-01
Published:
2020-05-21
Contact:
Yingnan Chen
摘要: 全基因组重复与串联重复是发生基因重复的重要机制, 也是基因组和遗传系统多样化的重要动力。LRR-RLK编码富含亮氨酸重复的类受体蛋白激酶, 是被子植物进化史上发生大规模扩张而形成的多基因家族。拟南芥(Arabidopsis thaliana) AtLRR-RLK包含15个亚家族, AtLRR VIII-2是其中发生串联重复比例最高的亚家族。通过分析拟南芥、杨树(Populus trichocarpa)、葡萄(Vitis vinifera)和番木瓜(Carica papaya) 4种模式植物中LRR VIII-2亚家族基因的扩张及差异保留情况, 结果显示, LRR VIII-2在杨树中的扩张程度最高, 在拟南芥和葡萄中的扩张程度居中, 但在番木瓜中发生丢失。拟南芥、杨树和葡萄LRR VIII-2亚家族具有旁系同源基因对, 但在番木瓜中未发现旁系同源基因。除杨树中的1对旁系同源基因外, 4种模式植物中LRR VIII-2亚家族的旁系和直系同源基因都受到较强的纯化选择作用。对LRR VIII-2亚家族进化历史的深入分析有助于理解基因重复在植物进化中的作用和意义, 可为预测同源基因功能及解析其它基因家族进化历史提供参考。
闫晨阳,陈赢男. 4种模式植物LRR VIII-2亚家族基因的鉴定和进化历史分析. 植物学报, 2020, 55(4): 442-456.
Chenyang Yan,Yingnan Chen. Identification and Evolution of LRR VIII-2 Subfamily Genes in Four Model Plant Species. Chinese Bulletin of Botany, 2020, 55(4): 442-456.
Primer name | Primer sequence (5'-3') | Length (bp) |
---|---|---|
P7-F | GGGTATTTTATGAGAAAGGGGA | 128 |
P7-R | CAACTTTGACACTTCCTGGGT | |
P8-F | CTCCGGCCTTCCATGTCTAC | 285 |
P8-R | TGGGAATTTCTCTCGCGTTG | |
P26-F | CAGAGCTACACAAACCACAGAAG | 158 |
P26-R | TGAGCATTCCCTTGTAAACAGAG | |
P27-F | TACGAGCACCCTTCAACACC | 300 |
P27-R | AAGCGTCATGGTCGTGCTT | |
UBQ-F | GTTGATTTTTGCTGGGAAGC | 192 |
UBQ-R | GATCTTGGCCTTCACGTTGT |
表1 实时定量PCR所用引物
Table 1 Primers for real-time qPCR
Primer name | Primer sequence (5'-3') | Length (bp) |
---|---|---|
P7-F | GGGTATTTTATGAGAAAGGGGA | 128 |
P7-R | CAACTTTGACACTTCCTGGGT | |
P8-F | CTCCGGCCTTCCATGTCTAC | 285 |
P8-R | TGGGAATTTCTCTCGCGTTG | |
P26-F | CAGAGCTACACAAACCACAGAAG | 158 |
P26-R | TGAGCATTCCCTTGTAAACAGAG | |
P27-F | TACGAGCACCCTTCAACACC | 300 |
P27-R | AAGCGTCATGGTCGTGCTT | |
UBQ-F | GTTGATTTTTGCTGGGAAGC | 192 |
UBQ-R | GATCTTGGCCTTCACGTTGT |
Code | Gene ID | Chr. | Genomic location | No. of exons | Protein length (aa) | Extracellular domain | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | AT1G07650 | At1 | 2359111-2366736 | 25 | 1020 | LRR10 | |||||
A2 | AT1G16670 | At1 | 5697216-5699870 | 6 | 390 | K | |||||
A3 | AT1G29720 | At1 | 10393659-10399873 | 25 | 1019 | LRR12 | |||||
A4 | AT1G29730 | At1 | 10400564-10405913 | 24 | 969 | LRR11 | |||||
A5 | AT1G29740 | At1 | 10407220-10413119 | 26 | 1078 | LRR5 | |||||
A6 | AT1G29750 | At1 | 10413853-10420774 | 24 | 1021 | LRR9 | |||||
A7 | AT1G53420 | At1 | 19926626-19931494 | 23 | 953 | LRR10 | |||||
A8 | AT1G53430 | At1 | 19934987-19941185 | 23 | 1030 | LRR9 | |||||
A9 | AT1G53440 | At1 | 19945869-19951562 | 23 | 1035 | LRR11 | |||||
A10 | AT1G56120 | At1 | 20987128-20993572 | 23 | 1047 | LRR11 | |||||
A11 | AT1G56130 | At1 | 20994746-21001013 | 24 | 1032 | LRR6 | |||||
A12 | AT1G56140 | At1 | 21001269-21007855 | 24 | 1033 | LRR6 | |||||
A13 | AT3G09010 | At3 | 2749908-2752390 | 6 | 393 | K | |||||
A14 | AT3G14840 | At3 | 4988008-4994109 | 24 | 1020 | LRR11 | |||||
P1 | Potri.001G308600 | Pt01 | 31227276-31234883 | 24 | 1006 | LRR10 | |||||
P2 | Potri.001G385200 | Pt01 | 40032658-40043384 | 24 | 1007 | LRR11 | |||||
P3 | Potri.001G385300 | Pt01 | 40046269-40056753 | 24 | 1021 | LRR13 | |||||
P4 | Potri.001G385400 | Pt01 | 40060761-40069904 | 24 | 1036 | LRR10 | |||||
P5 | Potri.001G385900 | Pt01 | 40135506-40145556 | 22 | 982 | LRR7 | |||||
P6 | Potri.001G386300 | Pt01 | 40164017-40178014 | 23 | 989 | LRR5 | |||||
P7 | Potri.001G393200 | Pt01 | 41232410-41235419 | 6 | 396 | K | |||||
P8 | Potri.001G438400 | Pt01 | 47008564-47013154 | 6 | 396 | K | |||||
P9 | Potri.003G025600 | Pt03 | 3062484-3069540 | 22 | 944 | LRR3 | |||||
P10 | Potri.003G025800 | Pt03 | 3088186-3100889 | 24 | 999 | LRR3 | |||||
P11 | Potri.003G148000 | Pt03 | 16311568-16319951 | 21 | 1041 | LRR13 | |||||
P12 | Potri.004G040200 | Pt04 | 3050127-3055020 | 6 | 373 | K | |||||
P13 | Potri.004G063200 | Pt04 | 5205009-5216081 | 23 | 1092 | LRR12 | |||||
P14 | Potri.004G063500 | Pt04 | 5238500-5250295 | 24 | 1011 | LRR9 | |||||
P15 | Potri.004G063600 | Pt04 | 5255561-5259093 | 6 | 468 | TK | |||||
P16 | Potri.004G063900 | Pt04 | 5275636-5279061 | 6 | 464 | TK | |||||
P17 | Potri.004G135500 | Pt04 | 15551257-15559647 | 24 | 1029 | LRR12 | |||||
Code | Gene ID | Chr. | Genomic location | No. of exons | Protein length (aa) | Extracellular domain | |||||
P18 | Potri.006G128500 | Pt06 | 10474234-10477075 | 5 | 471 | K | |||||
P19 | Potri.007G067900 | Pt07 | 8907797-8916407 | 24 | 1036 | LRR12 | |||||
P20 | Potri.008G040800 | Pt08 | 2314252-2320106 | 4 | 341 | K | |||||
P21 | Potri.010G221400 | Pt10 | 20632758-20635063 | 6 | 366 | K | |||||
P22 | Potri.011G049600 | Pt11 | 4238297-4243676 | 5 | 374 | K | |||||
P23 | Potri.011G072300 | Pt11 | 6917401-6930365 | 24 | 1024 | LRR8 | |||||
P24 | Potri.011G075400 | Pt11 | 7247330-7259126 | 22 | 1003 | LRR9 | |||||
P25 | Potri.011G106400 | Pt11 | 12955841-12965039 | 22 | 1015 | LRR11 | |||||
P26 | Potri.011G112000 | Pt11 | 13684010-13689252 | 6 | 396 | K | |||||
P27 | Potri.011G142100 | Pt11 | 16335090-16338863 | 6 | 393 | K | |||||
P28 | Potri.016G114800 | Pt16 | 11913776-11918410 | 7 | 385 | K | |||||
P29 | Potri.019G005200 | Pt19 | 554428-564520 | 24 | 801 | LRR5 | |||||
P30 | Potri.019G005300 | Pt19 | 582783-593615 | 24 | 1003 | LRR8 | |||||
P31 | Potri.019G005700 | Pt19 | 655851-664479 | 23 | 978 | LRR6 | |||||
P32 | Potri.019G005900 | Pt19 | 681330-690210 | 24 | 990 | LRR3 | |||||
P33 | Potri.019G006000 | Pt19 | 699799-708891 | 24 | 964 | LRR5 | |||||
P34 | Potri.019G007900 | Pt19 | 921639-930444 | 23 | 1002 | LRR3 | |||||
P35 | Potri.019G008900 | Pt19 | 1038688-1047049 | 24 | 972 | LRR9 | |||||
P36 | Potri.019G009700 | Pt19 | 1141831-1151301 | 13 | 988 | LRR3 | |||||
P37 | Potri.019G009800 | Pt19 | 1159163-1167756 | 24 | 989 | LRR9 | |||||
P38 | Potri.T072700 | scaffold_79 | 11693-18613 | 22 | 945 | LRR8 | |||||
V1 | GSVIVT01006444001 | chrUn | 26044571-26050096 | 8 | 441 | K | |||||
V2 | GSVIVT01013608001 | chrUn | 1284866-1301072 | 24 | 994 | LRR12 | |||||
V3 | GSVIVT01013612001 | chrUn | 1429686-1453826 | 21 | 897 | LRR10 | |||||
V4 | GSVIVT01013621001 | chrUn | 1735676-1793223 | 24 | 911 | LRR11 | |||||
V5 | GSVIVT01014113001 | Vv19 | 501306-518217 | 23 | 1036 | LRR9 | |||||
V6 | GSVIVT01014134001 | Vv19 | 669185-677944 | 24 | 1021 | LRR10 | |||||
V7 | GSVIVT01014138001 | Vv19 | 719037-726465 | 23 | 935 | LRR10 | |||||
V8 | GSVIVT01014145001 | Vv19 | 793325-800964 | 21 | 904 | LRR5 | |||||
V9 | GSVIVT01014147001 | Vv19 | 813603-825355 | 24 | 1063 | LRR5 | |||||
V10 | GSVIVT01014150001 | Vv19 | 846312-864401 | 30 | 1181 | LRR11 | |||||
V11 | GSVIVT01014221001 | Vv19 | 1629917-1636613 | 6 | 385 | K | |||||
V12 | GSVIVT01020456001 | Vv19 | 19137067-19142116 | 6 | 385 | K | |||||
V13 | GSVIVT01020786001 | Vv12 | 1992495-2002600 | 24 | 1011 | LRR10 | |||||
V14 | GSVIVT01021280001 | Vv10 | 3340198-3390494 | 24 | 1107 | LRR10 | |||||
V15 | GSVIVT01021285001 | Vv10 | 3439036-3462765 | 29 | 1144 | LRR12 | |||||
V16 | GSVIVT01021289001 | Vv10 | 3527408-3540220 | 24 | 1008 | LRR10 | |||||
V17 | GSVIVT01021291001 | Vv10 | 3556246-3578182 | 24 | 1017 | LRR11 | |||||
V18 | GSVIVT01024760001 | Vv6 | 7166910-7169739 | 6 | 372 | K | |||||
V19 | GSVIVT01025676001 | Vv8 | 13018070-13020594 | 7 | 433 | K | |||||
V20 | GSVIVT01033973001 | Vv8 | 16186419-16192809 | 6 | 380 | K | |||||
V21 | GSVIVT01038011001 | Vv10 | 12545889-12562513 | 24 | 1003 | LRR11 | |||||
C1 | evm.model.supercontig_124.16 | supercontig_124 | 342359-355054 | 9 | 651 | TK | |||||
C2 | evm.model.supercontig_124.19 | supercontig_124 | 400979-417373 | 8 | 604 | TK | |||||
C3 | evm.model.supercontig_131.56 | supercontig_131 | 437441-440461 | 6 | 380 | K | |||||
C4 | evm.model.supercontig_163.18 | supercontig_163 | 423778-427253 | 6 | 397 | K | |||||
Code | Gene ID | Chr. | Genomic location | No. of exons | Protein length (aa) | Extracellular domain | |||||
C5 | evm.model.supercontig_2076.1 | supercontig_2076 | 157-766 | 2 | 173 | K | |||||
C6 | evm.model.supercontig_748.4 | supercontig_748 | 17410-21951 | 9 | 583 | TK | |||||
C7 | evm.model.supercontig_77.35 | supercontig_77 | 331417-334856 | 10 | 636 | LRR1 | |||||
C8 | evm.model.supercontig_77.40 | supercontig_77 | 398441-404475 | 22 | 880 | LRR10 | |||||
C9 | evm.model.supercontig_77.43 | supercontig_77 | 453480-459449 | 23 | 829 | LRR9 | |||||
C10 | evm.model.supercontig_864.1 | supercontig_864 | 13501-16944 | 6 | 419 | K | |||||
C11 | evm.TU.contig_37590.1 | contig_37590 | 240-2161 | 6 | 365 | LRR1 |
表2 4种模式植物中84个LRR VIII-2基因的特征
Table 2 Features of 84 LRR VIII-2 genes identified in four model plant species
Code | Gene ID | Chr. | Genomic location | No. of exons | Protein length (aa) | Extracellular domain | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | AT1G07650 | At1 | 2359111-2366736 | 25 | 1020 | LRR10 | |||||
A2 | AT1G16670 | At1 | 5697216-5699870 | 6 | 390 | K | |||||
A3 | AT1G29720 | At1 | 10393659-10399873 | 25 | 1019 | LRR12 | |||||
A4 | AT1G29730 | At1 | 10400564-10405913 | 24 | 969 | LRR11 | |||||
A5 | AT1G29740 | At1 | 10407220-10413119 | 26 | 1078 | LRR5 | |||||
A6 | AT1G29750 | At1 | 10413853-10420774 | 24 | 1021 | LRR9 | |||||
A7 | AT1G53420 | At1 | 19926626-19931494 | 23 | 953 | LRR10 | |||||
A8 | AT1G53430 | At1 | 19934987-19941185 | 23 | 1030 | LRR9 | |||||
A9 | AT1G53440 | At1 | 19945869-19951562 | 23 | 1035 | LRR11 | |||||
A10 | AT1G56120 | At1 | 20987128-20993572 | 23 | 1047 | LRR11 | |||||
A11 | AT1G56130 | At1 | 20994746-21001013 | 24 | 1032 | LRR6 | |||||
A12 | AT1G56140 | At1 | 21001269-21007855 | 24 | 1033 | LRR6 | |||||
A13 | AT3G09010 | At3 | 2749908-2752390 | 6 | 393 | K | |||||
A14 | AT3G14840 | At3 | 4988008-4994109 | 24 | 1020 | LRR11 | |||||
P1 | Potri.001G308600 | Pt01 | 31227276-31234883 | 24 | 1006 | LRR10 | |||||
P2 | Potri.001G385200 | Pt01 | 40032658-40043384 | 24 | 1007 | LRR11 | |||||
P3 | Potri.001G385300 | Pt01 | 40046269-40056753 | 24 | 1021 | LRR13 | |||||
P4 | Potri.001G385400 | Pt01 | 40060761-40069904 | 24 | 1036 | LRR10 | |||||
P5 | Potri.001G385900 | Pt01 | 40135506-40145556 | 22 | 982 | LRR7 | |||||
P6 | Potri.001G386300 | Pt01 | 40164017-40178014 | 23 | 989 | LRR5 | |||||
P7 | Potri.001G393200 | Pt01 | 41232410-41235419 | 6 | 396 | K | |||||
P8 | Potri.001G438400 | Pt01 | 47008564-47013154 | 6 | 396 | K | |||||
P9 | Potri.003G025600 | Pt03 | 3062484-3069540 | 22 | 944 | LRR3 | |||||
P10 | Potri.003G025800 | Pt03 | 3088186-3100889 | 24 | 999 | LRR3 | |||||
P11 | Potri.003G148000 | Pt03 | 16311568-16319951 | 21 | 1041 | LRR13 | |||||
P12 | Potri.004G040200 | Pt04 | 3050127-3055020 | 6 | 373 | K | |||||
P13 | Potri.004G063200 | Pt04 | 5205009-5216081 | 23 | 1092 | LRR12 | |||||
P14 | Potri.004G063500 | Pt04 | 5238500-5250295 | 24 | 1011 | LRR9 | |||||
P15 | Potri.004G063600 | Pt04 | 5255561-5259093 | 6 | 468 | TK | |||||
P16 | Potri.004G063900 | Pt04 | 5275636-5279061 | 6 | 464 | TK | |||||
P17 | Potri.004G135500 | Pt04 | 15551257-15559647 | 24 | 1029 | LRR12 | |||||
Code | Gene ID | Chr. | Genomic location | No. of exons | Protein length (aa) | Extracellular domain | |||||
P18 | Potri.006G128500 | Pt06 | 10474234-10477075 | 5 | 471 | K | |||||
P19 | Potri.007G067900 | Pt07 | 8907797-8916407 | 24 | 1036 | LRR12 | |||||
P20 | Potri.008G040800 | Pt08 | 2314252-2320106 | 4 | 341 | K | |||||
P21 | Potri.010G221400 | Pt10 | 20632758-20635063 | 6 | 366 | K | |||||
P22 | Potri.011G049600 | Pt11 | 4238297-4243676 | 5 | 374 | K | |||||
P23 | Potri.011G072300 | Pt11 | 6917401-6930365 | 24 | 1024 | LRR8 | |||||
P24 | Potri.011G075400 | Pt11 | 7247330-7259126 | 22 | 1003 | LRR9 | |||||
P25 | Potri.011G106400 | Pt11 | 12955841-12965039 | 22 | 1015 | LRR11 | |||||
P26 | Potri.011G112000 | Pt11 | 13684010-13689252 | 6 | 396 | K | |||||
P27 | Potri.011G142100 | Pt11 | 16335090-16338863 | 6 | 393 | K | |||||
P28 | Potri.016G114800 | Pt16 | 11913776-11918410 | 7 | 385 | K | |||||
P29 | Potri.019G005200 | Pt19 | 554428-564520 | 24 | 801 | LRR5 | |||||
P30 | Potri.019G005300 | Pt19 | 582783-593615 | 24 | 1003 | LRR8 | |||||
P31 | Potri.019G005700 | Pt19 | 655851-664479 | 23 | 978 | LRR6 | |||||
P32 | Potri.019G005900 | Pt19 | 681330-690210 | 24 | 990 | LRR3 | |||||
P33 | Potri.019G006000 | Pt19 | 699799-708891 | 24 | 964 | LRR5 | |||||
P34 | Potri.019G007900 | Pt19 | 921639-930444 | 23 | 1002 | LRR3 | |||||
P35 | Potri.019G008900 | Pt19 | 1038688-1047049 | 24 | 972 | LRR9 | |||||
P36 | Potri.019G009700 | Pt19 | 1141831-1151301 | 13 | 988 | LRR3 | |||||
P37 | Potri.019G009800 | Pt19 | 1159163-1167756 | 24 | 989 | LRR9 | |||||
P38 | Potri.T072700 | scaffold_79 | 11693-18613 | 22 | 945 | LRR8 | |||||
V1 | GSVIVT01006444001 | chrUn | 26044571-26050096 | 8 | 441 | K | |||||
V2 | GSVIVT01013608001 | chrUn | 1284866-1301072 | 24 | 994 | LRR12 | |||||
V3 | GSVIVT01013612001 | chrUn | 1429686-1453826 | 21 | 897 | LRR10 | |||||
V4 | GSVIVT01013621001 | chrUn | 1735676-1793223 | 24 | 911 | LRR11 | |||||
V5 | GSVIVT01014113001 | Vv19 | 501306-518217 | 23 | 1036 | LRR9 | |||||
V6 | GSVIVT01014134001 | Vv19 | 669185-677944 | 24 | 1021 | LRR10 | |||||
V7 | GSVIVT01014138001 | Vv19 | 719037-726465 | 23 | 935 | LRR10 | |||||
V8 | GSVIVT01014145001 | Vv19 | 793325-800964 | 21 | 904 | LRR5 | |||||
V9 | GSVIVT01014147001 | Vv19 | 813603-825355 | 24 | 1063 | LRR5 | |||||
V10 | GSVIVT01014150001 | Vv19 | 846312-864401 | 30 | 1181 | LRR11 | |||||
V11 | GSVIVT01014221001 | Vv19 | 1629917-1636613 | 6 | 385 | K | |||||
V12 | GSVIVT01020456001 | Vv19 | 19137067-19142116 | 6 | 385 | K | |||||
V13 | GSVIVT01020786001 | Vv12 | 1992495-2002600 | 24 | 1011 | LRR10 | |||||
V14 | GSVIVT01021280001 | Vv10 | 3340198-3390494 | 24 | 1107 | LRR10 | |||||
V15 | GSVIVT01021285001 | Vv10 | 3439036-3462765 | 29 | 1144 | LRR12 | |||||
V16 | GSVIVT01021289001 | Vv10 | 3527408-3540220 | 24 | 1008 | LRR10 | |||||
V17 | GSVIVT01021291001 | Vv10 | 3556246-3578182 | 24 | 1017 | LRR11 | |||||
V18 | GSVIVT01024760001 | Vv6 | 7166910-7169739 | 6 | 372 | K | |||||
V19 | GSVIVT01025676001 | Vv8 | 13018070-13020594 | 7 | 433 | K | |||||
V20 | GSVIVT01033973001 | Vv8 | 16186419-16192809 | 6 | 380 | K | |||||
V21 | GSVIVT01038011001 | Vv10 | 12545889-12562513 | 24 | 1003 | LRR11 | |||||
C1 | evm.model.supercontig_124.16 | supercontig_124 | 342359-355054 | 9 | 651 | TK | |||||
C2 | evm.model.supercontig_124.19 | supercontig_124 | 400979-417373 | 8 | 604 | TK | |||||
C3 | evm.model.supercontig_131.56 | supercontig_131 | 437441-440461 | 6 | 380 | K | |||||
C4 | evm.model.supercontig_163.18 | supercontig_163 | 423778-427253 | 6 | 397 | K | |||||
Code | Gene ID | Chr. | Genomic location | No. of exons | Protein length (aa) | Extracellular domain | |||||
C5 | evm.model.supercontig_2076.1 | supercontig_2076 | 157-766 | 2 | 173 | K | |||||
C6 | evm.model.supercontig_748.4 | supercontig_748 | 17410-21951 | 9 | 583 | TK | |||||
C7 | evm.model.supercontig_77.35 | supercontig_77 | 331417-334856 | 10 | 636 | LRR1 | |||||
C8 | evm.model.supercontig_77.40 | supercontig_77 | 398441-404475 | 22 | 880 | LRR10 | |||||
C9 | evm.model.supercontig_77.43 | supercontig_77 | 453480-459449 | 23 | 829 | LRR9 | |||||
C10 | evm.model.supercontig_864.1 | supercontig_864 | 13501-16944 | 6 | 419 | K | |||||
C11 | evm.TU.contig_37590.1 | contig_37590 | 240-2161 | 6 | 365 | LRR1 |
Gene pair | Ka/Ks | Gene pair | Ka/Ks | Gene pair | Ka/Ks | |
---|---|---|---|---|---|---|
Paralogous | A4-A5 | 0.2184 | P9-P25 | 0.3214 | P32-P36 | 0.4003 |
A8-A9 | 0.2680 | P10-P17 | 0.1596 | P32-P37 | 0.6808 | |
A10-A11 | 0.2870 | P10-P25 | 0.3488 | P32-P38 | 0.3088 | |
A10-A12 | 0.2910 | P12-P22 | 0.2362 | P33-P34 | 0.6734 | |
A11-A12 | 0.2498 | P13-P23 | 0.2871 | P33-P35 | 0.5076 | |
P1-P29 | 0.3010 | P14-P15 | 0.2140 | P33-P36 | 0.5615 | |
P1-P30 | 0.3292 | P14-P16 | 0.1985 | P33-P37 | 0.6011 | |
P1-P31 | 0.3020 | P15-P16 | 1.4030 | P33-P38 | 0.3093 | |
P1-P32 | 0.3077 | P15-P24 | 0.3642 | P34-P35 | 0.5274 | |
P1-P33 | 0.2955 | P16-P24 | 0.3469 | P34-P36 | 0.6011 | |
P1-P34 | 0.3075 | P20-P21 | 0.1211 | P34-P37 | 0.7145 | |
P1-P35 | 0.3188 | P29-P30 | 0.3678 | P34-P38 | 0.3139 | |
P1-P36 | 0.2997 | P29-P31 | 0.3321 | P35-P36 | 0.3943 | |
P1-P37 | 0.3122 | P29-P32 | 0.3381 | P35-P37 | 0.5829 | |
P1-P38 | 0 | P29-P33 | 0.3334 | P35-P38 | 0.3204 | |
P3-P4 | 0.3683 | P29-P34 | 0.3317 | P36-P37 | 0.4718 | |
P3-P5 | 0.3731 | P29-P35 | 0.3411 | P36-P38 | 0.2992 | |
P3-P6 | 0.4963 | P29-P36 | 0.3215 | P37-P38 | 0.3134 | |
P3-P9 | 0.3791 | P29-P37 | 0.3392 | V2-V3 | 0.3479 | |
P3-P10 | 0.4125 | P29-P38 | 0.3169 | V2-V4 | 0.2818 | |
P3-P25 | 0.3422 | P30-P31 | 0.5422 | V2-V21 | 0.5377 | |
P4-P5 | 0.4843 | P30-P32 | 0.6659 | V3-V4 | 0.3152 | |
P4-P6 | 0.3907 | P30-P33 | 0.6512 | V3-V21 | 0.3481 | |
P4-P9 | 0.7093 | P30-P34 | 0.8013 | V4-V21 | 0.2963 | |
P4-P10 | 0.4706 | P30-P35 | 0.5957 | V6-V7 | 0.3152 | |
P4-P17 | 0.1770 | P30-P36 | 0.5292 | V6-V8 | 0.2935 | |
P4-P25 | 0.3206 | P30-P37 | 0.6763 | V6-V9 | 0.3034 | |
P5-P6 | 0.3712 | P30-P38 | 0.3368 | V6-V10 | 0.2833 | |
P5-P9 | 0.6021 | P31-P32 | 0.4655 | V7-V8 | 0.7300 | |
P5-P10 | 0.8590 | P31-P33 | 0.4989 | V7-V9 | 0.5629 | |
P5-P17 | 0.1715 | P31-P34 | 0.5435 | V7-V10 | 0.4047 | |
P5-P25 | 0.3456 | P31-P35 | 0.4251 | V8-V9 | 0.4763 | |
P6-P9 | 0.4063 | P31-P36 | 0.3099 | V8-V10 | 0.3629 | |
P6-P10 | 0.4357 | P31-P37 | 0.5370 | V9-V10 | 0.3855 | |
P6-P25 | 0.3556 | P31-P38 | 0.3142 | V14-V15 | 0.4844 | |
P7-P26 | 0.5268 | P32-P33 | 0.5711 | V14-V16 | 0.2626 | |
P8-P27 | 0.2579 | P32-P34 | 0.6597 | V15-V16 | 0.3233 | |
P9-P10 | 0.6507 | P32-P35 | 0.5461 | V16-V17 | 0.2770 | |
P9-P17 | 0.1859 | |||||
Orthologous | P7-C3 | 0.2223 | P28-C4 | 0.2070 | C4-V20 | 0.1760 |
P25-V10 | 0.2441 | C3-V11 | 0.2574 | C9-V10 | 0.2076 |
表3 4种模式植物LRR VIII-2亚家族基因旁系同源与直系同源基因对
Table 3 Paralogous and orthologous gene pairs in LRR VIII-2 subfamily identified in four model plant species
Gene pair | Ka/Ks | Gene pair | Ka/Ks | Gene pair | Ka/Ks | |
---|---|---|---|---|---|---|
Paralogous | A4-A5 | 0.2184 | P9-P25 | 0.3214 | P32-P36 | 0.4003 |
A8-A9 | 0.2680 | P10-P17 | 0.1596 | P32-P37 | 0.6808 | |
A10-A11 | 0.2870 | P10-P25 | 0.3488 | P32-P38 | 0.3088 | |
A10-A12 | 0.2910 | P12-P22 | 0.2362 | P33-P34 | 0.6734 | |
A11-A12 | 0.2498 | P13-P23 | 0.2871 | P33-P35 | 0.5076 | |
P1-P29 | 0.3010 | P14-P15 | 0.2140 | P33-P36 | 0.5615 | |
P1-P30 | 0.3292 | P14-P16 | 0.1985 | P33-P37 | 0.6011 | |
P1-P31 | 0.3020 | P15-P16 | 1.4030 | P33-P38 | 0.3093 | |
P1-P32 | 0.3077 | P15-P24 | 0.3642 | P34-P35 | 0.5274 | |
P1-P33 | 0.2955 | P16-P24 | 0.3469 | P34-P36 | 0.6011 | |
P1-P34 | 0.3075 | P20-P21 | 0.1211 | P34-P37 | 0.7145 | |
P1-P35 | 0.3188 | P29-P30 | 0.3678 | P34-P38 | 0.3139 | |
P1-P36 | 0.2997 | P29-P31 | 0.3321 | P35-P36 | 0.3943 | |
P1-P37 | 0.3122 | P29-P32 | 0.3381 | P35-P37 | 0.5829 | |
P1-P38 | 0 | P29-P33 | 0.3334 | P35-P38 | 0.3204 | |
P3-P4 | 0.3683 | P29-P34 | 0.3317 | P36-P37 | 0.4718 | |
P3-P5 | 0.3731 | P29-P35 | 0.3411 | P36-P38 | 0.2992 | |
P3-P6 | 0.4963 | P29-P36 | 0.3215 | P37-P38 | 0.3134 | |
P3-P9 | 0.3791 | P29-P37 | 0.3392 | V2-V3 | 0.3479 | |
P3-P10 | 0.4125 | P29-P38 | 0.3169 | V2-V4 | 0.2818 | |
P3-P25 | 0.3422 | P30-P31 | 0.5422 | V2-V21 | 0.5377 | |
P4-P5 | 0.4843 | P30-P32 | 0.6659 | V3-V4 | 0.3152 | |
P4-P6 | 0.3907 | P30-P33 | 0.6512 | V3-V21 | 0.3481 | |
P4-P9 | 0.7093 | P30-P34 | 0.8013 | V4-V21 | 0.2963 | |
P4-P10 | 0.4706 | P30-P35 | 0.5957 | V6-V7 | 0.3152 | |
P4-P17 | 0.1770 | P30-P36 | 0.5292 | V6-V8 | 0.2935 | |
P4-P25 | 0.3206 | P30-P37 | 0.6763 | V6-V9 | 0.3034 | |
P5-P6 | 0.3712 | P30-P38 | 0.3368 | V6-V10 | 0.2833 | |
P5-P9 | 0.6021 | P31-P32 | 0.4655 | V7-V8 | 0.7300 | |
P5-P10 | 0.8590 | P31-P33 | 0.4989 | V7-V9 | 0.5629 | |
P5-P17 | 0.1715 | P31-P34 | 0.5435 | V7-V10 | 0.4047 | |
P5-P25 | 0.3456 | P31-P35 | 0.4251 | V8-V9 | 0.4763 | |
P6-P9 | 0.4063 | P31-P36 | 0.3099 | V8-V10 | 0.3629 | |
P6-P10 | 0.4357 | P31-P37 | 0.5370 | V9-V10 | 0.3855 | |
P6-P25 | 0.3556 | P31-P38 | 0.3142 | V14-V15 | 0.4844 | |
P7-P26 | 0.5268 | P32-P33 | 0.5711 | V14-V16 | 0.2626 | |
P8-P27 | 0.2579 | P32-P34 | 0.6597 | V15-V16 | 0.3233 | |
P9-P10 | 0.6507 | P32-P35 | 0.5461 | V16-V17 | 0.2770 | |
P9-P17 | 0.1859 | |||||
Orthologous | P7-C3 | 0.2223 | P28-C4 | 0.2070 | C4-V20 | 0.1760 |
P25-V10 | 0.2441 | C3-V11 | 0.2574 | C9-V10 | 0.2076 |
图1 4种模式植物LRR VIII-2亚家族基因系统发生树 左侧部分为LRR VIII-2亚家族基因系统发生树, 右侧部分为每个基因的保守结构域分析。
Figure 1 Phylogenetic tree of LRR VIII-2 subfamily genes in four model plant species The left panel is the phylogenetic tree of LRR VIII-2 subfamily genes, and the right panel is the conserved domains of each gene.
Block pair No. | Code of locus 1 | Code of locus 2 | Block median Ks | S/WGD | |
---|---|---|---|---|---|
Block pair within species | 21 | PN2 | P11 | 0.2592 | p |
267 | P12 | P22 | 0.26815 | p | |
442 | P20 | P21 | 0.26975 | p | |
64 | P8 | P27 | 0.27455 | p | |
61 | PN1 | P25 | 0.2765 | p | |
61 | P7 | P26 | 0.2765 | p | |
303 | P17 | PN3 | 0.2983 | p | |
121 | P1 | P34 | 0.3034 | p | |
267 | P13 | P23 | 0.3551 | p | |
372 | P18 | P21 | 0.3625 | p | |
515 | P22 | P28 | 0.8329 | γ | |
284 | P12 | P28 | 0.93355 | γ | |
26 | P2 | P13 | 1.27845 | γ | |
274 | P14 | P25 | 1.3549 | γ | |
361 | P18 | P20 | 1.4912 | γ | |
503 | P23 | P25 | 1.6122 | γ | |
57 | A7 | A14 | 0.7968 | α | |
104 | V18 | V20 | 1.13135 | γ | |
28 | VN2 | V19 | 1.11255 | γ | |
Block pair between species | 608 | A13 | P28 | 1.6761 | γ |
214 | A2 | P26 | 1.6727 | γ | |
35 | A2 | P7 | 1.986 | γ | |
32 | A6 | VN1 | 1.59645 | γ | |
382 | A13 | V20 | 1.7376 | γ | |
110 | A2 | V11 | 1.88175 | γ | |
932 | CN1 | P25 | 1.162 | γ | |
930 | CN1 | P2 | 1.09745 | γ | |
153 | CN2 | P13 | 1.1864 | γ | |
299 | CN3 | P28 | 1.2174 | γ | |
523 | CN4 | P22 | 1.12095 | γ | |
517 | CN4 | P12 | 1.1073 | γ | |
203 | CN5 | P26 | 0.98095 | γ | |
241 | P14 | VN1 | 1.0883 | γ | |
668 | P23 | V10 | 1.52975 | γ | |
657 | P23 | V13 | 1.4531 | γ | |
249 | P13 | V13 | 1.5376 | γ | |
978 | PN5 | V5 | 1.8582 | γ | |
668 | PN4 | V5 | 1.52975 | γ | |
81 | CN6 | V14 | 1.15 | γ | |
108 | CN5 | V11 | 1.0547 | γ | |
287 | CN4 | V1 | 1.0255 | γ | |
164 | CN3 | V20 | 1.06385 | γ |
表4 4种模式植物LRR VIII-2亚家族基因共线性同源基因及Ks值
Table 4 Collinearity of LRR VIII-2 subfamily homologous genes and Ks value in four model plant species
Block pair No. | Code of locus 1 | Code of locus 2 | Block median Ks | S/WGD | |
---|---|---|---|---|---|
Block pair within species | 21 | PN2 | P11 | 0.2592 | p |
267 | P12 | P22 | 0.26815 | p | |
442 | P20 | P21 | 0.26975 | p | |
64 | P8 | P27 | 0.27455 | p | |
61 | PN1 | P25 | 0.2765 | p | |
61 | P7 | P26 | 0.2765 | p | |
303 | P17 | PN3 | 0.2983 | p | |
121 | P1 | P34 | 0.3034 | p | |
267 | P13 | P23 | 0.3551 | p | |
372 | P18 | P21 | 0.3625 | p | |
515 | P22 | P28 | 0.8329 | γ | |
284 | P12 | P28 | 0.93355 | γ | |
26 | P2 | P13 | 1.27845 | γ | |
274 | P14 | P25 | 1.3549 | γ | |
361 | P18 | P20 | 1.4912 | γ | |
503 | P23 | P25 | 1.6122 | γ | |
57 | A7 | A14 | 0.7968 | α | |
104 | V18 | V20 | 1.13135 | γ | |
28 | VN2 | V19 | 1.11255 | γ | |
Block pair between species | 608 | A13 | P28 | 1.6761 | γ |
214 | A2 | P26 | 1.6727 | γ | |
35 | A2 | P7 | 1.986 | γ | |
32 | A6 | VN1 | 1.59645 | γ | |
382 | A13 | V20 | 1.7376 | γ | |
110 | A2 | V11 | 1.88175 | γ | |
932 | CN1 | P25 | 1.162 | γ | |
930 | CN1 | P2 | 1.09745 | γ | |
153 | CN2 | P13 | 1.1864 | γ | |
299 | CN3 | P28 | 1.2174 | γ | |
523 | CN4 | P22 | 1.12095 | γ | |
517 | CN4 | P12 | 1.1073 | γ | |
203 | CN5 | P26 | 0.98095 | γ | |
241 | P14 | VN1 | 1.0883 | γ | |
668 | P23 | V10 | 1.52975 | γ | |
657 | P23 | V13 | 1.4531 | γ | |
249 | P13 | V13 | 1.5376 | γ | |
978 | PN5 | V5 | 1.8582 | γ | |
668 | PN4 | V5 | 1.52975 | γ | |
81 | CN6 | V14 | 1.15 | γ | |
108 | CN5 | V11 | 1.0547 | γ | |
287 | CN4 | V1 | 1.0255 | γ | |
164 | CN3 | V20 | 1.06385 | γ |
图2 4种模式植物中LRR VIII-2祖先基因在古多倍化后的差异保留和扩张 左侧第1个数字为行号。方框代表种内和种间染色体共线性区段(SCB)。方框中的编码为定位于该SCB上的LRR VIII-2基因编号; 基因编号中带字母N的表示该基因与LRR VIII-2基因存在共线性同源关系, 但该基因已不具备LRR VIII-2亚家族成员的特征结构域; 字母L表示SCB上和LRR VIII-2亚家族对应的共线性基因丢失, 但该区段被保留下来; 空白位置表示SCB完全丢失。
Figure 2 Differential retention and expansion of the ancestral LRR VIII-2 gene associated with paleopolyploidy events in four model plant species The left first digit indicates the row number. Squares in the same line represent the syntenic chromosomal blocks (SCBs) within and between species. Gene codes in the square correspond to the associated LRR VIII-2 genes; gene code containing a letter N indicates that the gene has a collinear homologous relationship with the LRR VIII-2 gene, but the gene no longer has the characteristic domain of the members of the LRR VIII-2 subfamily; the letter L represents the corresponding SCB has been retained, but the duplicated LRR VIII-2 gene on the SCB has been lost; blank regions indicate the SCBs has been completely lost.
Gene expansion mode | Arabidopsis thaliana | Populus trichocarpa | Carica papaya | Vitis vinifera |
---|---|---|---|---|
No. of genes associated with S/WGD | 5 | 19 | 3 | 9 |
No. of genes associated with tandem duplication | 7 | 15 | 0 | 6 |
No. of genes expanded through other modes | 0 | 3 | 0 | 5 |
No. of unique genes | 2 | 1 | 8 | 1 |
Total number of genes in LRR VIII-2 subfamily | 14 | 38 | 11 | 21 |
表5 4种模式植物LRR VIII-2亚家族基因扩张方式
Table 5 Expansion modes of LRR VIII-2 subfamily genes in four model plant species
Gene expansion mode | Arabidopsis thaliana | Populus trichocarpa | Carica papaya | Vitis vinifera |
---|---|---|---|---|
No. of genes associated with S/WGD | 5 | 19 | 3 | 9 |
No. of genes associated with tandem duplication | 7 | 15 | 0 | 6 |
No. of genes expanded through other modes | 0 | 3 | 0 | 5 |
No. of unique genes | 2 | 1 | 8 | 1 |
Total number of genes in LRR VIII-2 subfamily | 14 | 38 | 11 | 21 |
图3 低温胁迫对拟南芥和山新杨LRR VIII-2亚家族基因表达的影响 (A) 低温胁迫下拟南芥AtLRR VIII-2亚家族基因表达热图; (B) 低温胁迫下4个山新杨LRR VIII-2亚家族基因相对表达量。*表示差异显著(t-检验, P<0.05)。
Figure 3 Expression of LRR VIII-2 genes under low temperature treatment in Arabidopsis thaliana and Populus davidiana × P. bolleana (A) Transcriptome analysis of AtLRR VIII-2 genes in Arabidopsis treated with low temperature; (B) Relative expression of four LRR VIII-2 genes in P. davidiana × P. bolleana under low temperature stress. * indicate significant differences (t-test, P<0.05).
[1] | 孙红正, 葛颂 (2010). 重复基因的进化——回顾与进展. 植物学报 45, 13-22. |
[2] | 王鹤飞, 李雪, 董玲丽, 张俊成, 赵茂林, 邢国珍, 王道文, 郑文明 (2015). 小麦受体样蛋白激酶及其衍生蛋白的研究进展. 植物学报 50, 255-262. |
[3] | 闫锋, 祝传书, 庞保平 (2009). 植物类受体蛋白激酶的研究进展. 西北植物学报 29, 851-858. |
[4] | 张兆沛, 王志伟, 张慧蓉 (2009). 植物类受体蛋白激酶研究概况. 山西农业科学 37, 75-78. |
[5] | 郑超, 李登高, 白薇 (2016). 植物富含半胱氨酸的类受体激酶的研究进展. 生物技术通报 32, 10-17. |
[6] |
Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S (2005). The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES 1 and 2 control male sporogenesis. Plant Cell 17, 3337-3349.
DOI URL PMID |
[7] |
Bej A, Sahoo BR, Swain B, Basu M, Jayasankar P, Samanta M (2014). LRRsearch: an asynchronous server- based application for the prediction of leucine-rich repeat motifs and an integrative database of NOD-like receptors. Comput Biol Med 53, 164-170.
DOI URL PMID |
[8] |
Blanc G, Hokamp K, Wolfe KH (2003). A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13, 137-144.
DOI URL PMID |
[9] |
Blanc G, Wolfe KH (2004). Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16, 1667-1678.
DOI URL PMID |
[10] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2002). TBtools, an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13, 1194-1202.
URL PMID |
[11] |
Clark SE, Williams RW, Meyerowitz EM (1997). The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89, 575-585.
URL PMID |
[12] |
Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI (2005). Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES 1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17, 3350-3361.
URL PMID |
[13] |
Conant GC, Wolfe KH (2008). Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9, 938-950.
URL PMID |
[14] | Cummings MP (2004). PAUP* (phylogenetic analysis using parsimony (and other methods)). Santa Monica: American Cancer Society. pp. 37-45. |
[15] |
Dai XG, Hu QJ, Cai QL, Feng K, Ye N, Tuskan GA, Milne R, Chen YN, Wan ZB, Wang ZF, Luo WC, Wang K, Wan DS, Wang MX, Wang J, Liu JQ, Yin TM (2014). The willow genome and divergent evolution from poplar after the common genome duplication. Cell Res 24, 1274-1277.
DOI URL PMID |
[16] |
Feng C, Mackey AJ, Vermunt JK, Roos DS (2007). Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS One 2, e383.
URL PMID |
[17] |
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014). Pfam: the protein families database. Nucleic Acids Res 42, D222-D230.
URL PMID |
[18] |
Finn RD, Clements J, Eddy SR (2011). HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39, W29-W37.
DOI URL PMID |
[19] |
Fischer I, Diévart A, Droc G, Dufayard JF, Chantret N (2016). Evolutionary dynamics of the leucine-rich repeat receptor-like kinase (LRR-RLK) subfamily in angiosperms. Plant Physiol 170, 1595-1610.
DOI URL PMID |
[20] |
Freeling M (2009). Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60, 433-453.
DOI URL PMID |
[21] |
Gabaldón T, Dessimoz C, Huxley-Jones J, Vilella AJ, Sonnhammer EL, Lewis S (2009). Joining forces in the quest for orthologs. Genome Biol 10, 403.
DOI URL PMID |
[22] |
Gómez-Gómez GL, Boller T (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5, 1003-1011.
DOI URL PMID |
[23] |
Guo LH, Chen YN, Ye N, Dai XG, Yang WX, Yin TM (2014). Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family. BMC Genomics 15, 612.
URL PMID |
[24] | Hwang SG, Kim DS, Jang CS (2011). Comparative analysis of evolutionary dynamics of genes encoding leucine- rich repeat receptor-like kinase between rice and Arabidopsis. Genetics 139, 1023. |
[25] | Jia YX, Ding YL, Shi YT, Zhang XY, Gong ZZ, Yang SH (2016). The cbfs triple mutants reveal the essential functions of cbfs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol 212, 345-353. |
[26] |
Lee TH, Tang HB, Wang XY, Paterson AH (2012). PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41, D1152-D1158.
URL PMID |
[27] | Lehti-Shiu MD, Shiu SH (2012). Diversity, classification and function of the plant protein kinase superfamily. Philos Trans R Soc B Biol Sci 367, 2619-2639. |
[28] |
Letunic I, Bork P (2018). 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46, D493-D496.
URL PMID |
[29] |
Li WH, Yang J, Gu X (2005). Expression divergence between duplicate genes. Trends Genet 21, 602-607.
DOI URL PMID |
[30] |
Librado P, Rozas J (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452.
DOI URL PMID |
[31] |
Liu ZY, Jia YX, Ding YL, Shi YT, Li Z, Guo Y, Gong ZZ, Yang SH (2017). Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Mol Cell 66, 117-128.
DOI URL PMID |
[32] |
Marchler-Bauer A, Lu SN, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke ZX, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang DC, Zhang NG, Zheng CJ, Bryant SH (2011). CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39, D225-D229.
URL PMID |
[33] |
Moore RC, Purugganan MD (2003). The early stages of duplicate gene evolution. Proc Natl Acad Sci USA 100, 15682-15687.
DOI URL PMID |
[34] |
Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008). Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319, 294.
URL PMID |
[35] |
Rameneni JJ, Lee Y, Dhandapani V, Yu XN, Choi SR, Oh MH, Lim YP (2015). Genomic and post-translational modification analysis of leucine-rich-repeat receptor-like kinases in Brassica rapa. PLoS One 10, e0142255.
URL PMID |
[36] |
Shiu HS, Bleecker AB (2003). Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132, 530-543.
URL PMID |
[37] |
Shiu SH, Bleecker AB (2001a). Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 2001, re22.
URL PMID |
[38] |
Shiu SH, Bleecker AB (2001 b). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98, 10763-10768.
URL PMID |
[39] |
Shumayla, Sharma S, Kumar R, Mendu V, Singh K, Upadhyay SK (2016). Genomic dissection and expression profiling revealed functional divergence in Triticum aestivum leucine rich repeat receptor like kinases (TaLRRKs). Front Plant Sci 7, 1374.
URL PMID |
[40] |
Song DH, Li GJ, Song FM, Zheng Z (2008). Molecular characterization and expression analysis of OsBISERK1, a gene encoding a leucine-rich repeat receptor-like kinase, during disease resistance responses in rice. Mol Biol Rep 35, 275-283.
DOI URL PMID |
[41] |
Sonnhammer ELL, Koonin EV (2002). Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet 18, 619-620.
DOI URL PMID |
[42] |
Stone JM, Walker JC (1995). Plant protein kinase families and signal transduction. Plant Physiol 108, 451-457.
URL PMID |
[43] |
Sun XL, Wang GL (2011). Genome-wide identification, characterization and phylogenetic analysis of the rice LRR-kinases. PLoS One 6, e16079.
URL PMID |
[44] |
Tang HB, Bowers JE, Wang XY, Ming R, Alam M, Paterson AH (2008a). Synteny and collinearity in plant genomes. Science 320, 486-488.
DOI URL PMID |
[45] |
Tang HB, Wang XY, Bowers JE, Ming R, Alam M, Paterson AH (2008b). Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18, 1944-1954.
DOI URL PMID |
[46] | Tang P, Zhang Y, Sun XQ, Tian DC, Yang SH, Ding J (2010). Disease resistance signature of the leucine-rich repeat receptor-like kinase genes in four plant species. Plant Sci 179, 399-406. |
[47] |
The Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
URL PMID |
[48] |
Tian WD, Skolnick J (2003). How well is enzyme function conserved as a function of pairwise sequence identity? J Mol Biol 333, 863-882.
DOI URL PMID |
[49] |
Wei ZR, Wang JH, Yang SH, Song YJ (2015). Identification and expression analysis of the LRR-RLK gene family in tomato(Solanum lycopersicum) Heinz 1706. Genome 58, 121-134.
DOI URL |
[50] |
Yang SH, Zhang XH, Yue JX, Tian DC, Chen JQ (2008). Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomic 280, 187-198.
DOI URL |
[51] |
Yu Y, Fuscoe JC, Zhao C, Guo C, Jia MW, Tao Q, Bannon DI, Lancashire L, Bao WJ, Du TT, Luo H, Su ZQ, Jones WD, Moland CL, Branham WS, Qian F, Ning BT, Li Y, Hong HX, Guo L, Mei N, Shi TL, Wang KY, Wolfinger RD, Nikolsky Y, Walker SJ, Duerksen- Hughes P, Mason CE, Tong WD, Thierry-Mieg J, Thierry-Mieg D, Shi LM, Wang C (2014). A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nat Commun 5, 3230.
DOI URL PMID |
[52] |
Zan YJ, Ji Y, Zhang Y, Yang SH, Song YJ, Wang JH (2013). Genome-wide identification, characterization and expression analysis of Populus leucine-rich repeat receptor-like protein kinase genes. BMC Genomics 14, 318.
URL PMID |
[1] | 王梦龙,彭小群,陈竹锋,唐晓艳. 植物凝集素类受体蛋白激酶研究进展[J]. 植物学报, 2020, 55(1): 96-105. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||