Chinese Bulletin of Botany ›› 2021, Vol. 56 ›› Issue (4): 391-403.DOI: 10.11983/CBB21037
• EXPERIMENTAL COMMUNICATIONS • Next Articles
Mengke Du, Wenting Lian, Xiao Zhang, Xinxin Li*()
Received:
2021-02-13
Accepted:
2021-05-07
Online:
2021-07-01
Published:
2021-06-30
Contact:
Xinxin Li
Mengke Du, Wenting Lian, Xiao Zhang, Xinxin Li. Effects of Nitrogen Application on Nitrogen Fixation Capacity and GmLbs Expression in Soybean[J]. Chinese Bulletin of Botany, 2021, 56(4): 391-403.
Name | Primer sequence (5'-3') |
---|---|
GmLb1-qF | CCTCGATACTGGAGAAAGCACC |
GmLb1-qR | CAAGTGCGGCATCAATCACC |
GmLb2-qF | AATGGAACAGTGGTGGCTGA |
GmLb2-qR | AGCACTGCTCAATTCGTCAC |
GmLb3-qF | CCGCACTTGGTTCTGTTCAT |
GmLb3-qR | TGCTGCCAATTCATCGTAGG |
GmLb4-qF | GATCTACTATTGCCGTCAA |
GmLb4-qR | GCATCGATTATGATTCACA |
Table 1 Gene-specific primers used for qRT-PCR analysis
Name | Primer sequence (5'-3') |
---|---|
GmLb1-qF | CCTCGATACTGGAGAAAGCACC |
GmLb1-qR | CAAGTGCGGCATCAATCACC |
GmLb2-qF | AATGGAACAGTGGTGGCTGA |
GmLb2-qR | AGCACTGCTCAATTCGTCAC |
GmLb3-qF | CCGCACTTGGTTCTGTTCAT |
GmLb3-qR | TGCTGCCAATTCATCGTAGG |
GmLb4-qF | GATCTACTATTGCCGTCAA |
GmLb4-qR | GCATCGATTATGATTCACA |
Figure 1 Effects of nitrogen supply on leghemoglobin (Lb) concentration and nitrogenase activity of soybean nodules (A) Cross section of nodules; (B) Leghemoglobin concentration; (C) Nitrogenase activity. There were 4 biological replicates, 2 or 3 nodules were randomly harvested for Lb concentration and nitrogenase activity analysis. Data are means±SE from 10 nodules. Different lowercase letters indicate significant differences among different N supply levels (P<0.05). Bars=2 mm
Figure 2 Effects of nitrogen supply on the infected cell development in nodules (A) Toluidine blue-stained nodule cross-sections; (B) Number of infected cells; (C) Surface area of infected cells. Data are means±SE from 40 cross of nodules. Different lowercase letters indicate significant differences among different N supply levels (P<0.05). Bars=200 µm
Gene name | Phytozome locus9.1 | Phytozome locus12.0 | NCBI number | Accession number | Location coordinates (5'-3') |
---|---|---|---|---|---|
GmLb1 | Glyma10g34260 | Glyma.10G198800.1 | NM_001248494.2 | BT092230 | 42996028-42997092 |
GmLb2 | Glyma10g34280 | Glyma.10G199000.1 | NM_001358072.1 | FK026737 | 43004554-43005947 |
GmLb3 | Glyma10g34290 | Glyma.10G199100.1 | NM_001248999.3 | BT092268 | 43009363-43011021 |
GmLb4 | Glyma20g33290 | Glyma.20G191200.1 | NM_001248319.3 | BT092218 | 42993081-42994203 |
GmLb5 | Glyma10g34275 | Glyma.10G198900.1 | - | - | 43000045-43003378 |
GmHb1 | Glyma11g12960 | Glyma.11G121700.1 | NM_001255274.2 | BT098807 | 9299437-9300752 |
GmHb2 | Glyma11g12980 | Glyma.11G121800.1 | NM_001357481.1 | BT096529 | 9303967-9305430 |
Table 2 Information of GmLbs/GmHbs genes in soybean
Gene name | Phytozome locus9.1 | Phytozome locus12.0 | NCBI number | Accession number | Location coordinates (5'-3') |
---|---|---|---|---|---|
GmLb1 | Glyma10g34260 | Glyma.10G198800.1 | NM_001248494.2 | BT092230 | 42996028-42997092 |
GmLb2 | Glyma10g34280 | Glyma.10G199000.1 | NM_001358072.1 | FK026737 | 43004554-43005947 |
GmLb3 | Glyma10g34290 | Glyma.10G199100.1 | NM_001248999.3 | BT092268 | 43009363-43011021 |
GmLb4 | Glyma20g33290 | Glyma.20G191200.1 | NM_001248319.3 | BT092218 | 42993081-42994203 |
GmLb5 | Glyma10g34275 | Glyma.10G198900.1 | - | - | 43000045-43003378 |
GmHb1 | Glyma11g12960 | Glyma.11G121700.1 | NM_001255274.2 | BT098807 | 9299437-9300752 |
GmHb2 | Glyma11g12980 | Glyma.11G121800.1 | NM_001357481.1 | BT096529 | 9303967-9305430 |
Figure 3 Prediction of the conserved domain and 3D protein structure of leghemoglobin (A) Prediction of the conserved domains (the yellow font represents the heme binding site, the black font represents the cofactor binding site, and the white font represents polypeptide binding site); (B) Prediction of 3D protein structure
Figure 5 Heatmaps of GmLbs and GmHbs gene expression in soybean (A) The RNA-seq data obtained from Soybase website (https://www.soybase.org); (B) The RNA-seq data obtained from Libault et al. (2010). RNA-seq data of different sources were calculated with log10(FPKM+1) and further used to generate the heatmaps. DAF: Days after flowering; HAS: Hours after sowing; SAM: Shoot apical meristem
Figure 6 Relative expression value of GmLb1-4 in soybean nodules under different nitrogen concentrations Data are means±SE of 3 biological replicates.
[1] | 艾文琴, 姜瀚原, 李欣欣, 廖红 (2018). 一种高效研究大豆根瘤共生固氮的营养液栽培体系. 植物学报 53, 519-527. |
[2] | 程凤娴, 曹桂芹, 王秀荣, 赵静, 严小龙, 廖红 (2008). 华南酸性低磷土壤中大豆根瘤菌高效株系的发现及应用. 科学通报 53, 2903-2910. |
[3] | 黎健龙, 涂攀峰, 陈娜, 唐劲驰, 王秀荣, 年海, 廖红, 严小龙 (2008). 茶树与大豆间作效应分析. 中国农业科学 41, 2040-2047. |
[4] | 李欣欣, 杨永庆, 钟永嘉, 廖红 (2019). 豆科作物适应酸性土壤的养分高效根系遗传改良. 华南农业大学学报 40(5), 186-194. |
[5] | 农玉琴, 黄少欣, 刘振洋, 廖春文, 韦锦坚, 陆金梅, 陈远权, 覃潇敏 (2019). 茶豆间作体系氮素对茶叶营养成分的影响. 安徽农业科学 47(21), 160-162. |
[6] |
Appleby CA (1984). Leghemoglobin and rhizobium respiration. Annu Rev Plant Physiol 35, 443-478.
DOI URL |
[7] |
Berger A, Guinand S, Boscari A, Puppo A, Brouquisse R (2020). Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration. New Phytol 227, 84-98.
DOI URL |
[8] | Bergersen FJ, Goodchild DJ (1973). Cellular location and concentration of leghaemoglobin in soybean root nodules. Aust J BioI Sci 26, 741-756. |
[9] |
Brisson N, Verma DP (1982). Soybean leghemoglobin gene family: normal, pseudo, and truncated genes. Proc Natl Acad Sci USA 79, 4055-4059.
DOI URL |
[10] |
Chen LY, Qin L, Zhou LL, Li XX, Chen ZC, Sun LL, Wang WF, Lin ZH, Zhao J, Yamaji N, Ma JF, Gu M, Xu GH, Liao H (2019a). A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean. New Phytol 221, 2013-2025.
DOI URL |
[11] |
Chen P, Song C, Liu XM, Zhou L, Yang H, Zhang XN, Zhou Y, Du Q, Pang T, Fu ZD, Wang XC, Liu WG, Yang F, Shu K, Du JB, Liu J, Yang WY, Yong TW (2019b). Yield advantage and nitrogen fate in an additive maize- soybean relay intercropping system. Sci Total Environ 657, 987-999.
DOI URL |
[12] |
Dakora FD (1995). A functional relationship between leghaemoglobin and nitrogenase based on novel measurements of the two proteins in legume root nodules. Ann Bot 75, 49-54.
DOI URL |
[13] |
Dakora FD, Appleby CA, Atkins CA (1991). Effect of pO2 on the formation and status of leghemoglobin in nodules of cowpea and soybean. Plant Physiol 95, 723-730.
PMID |
[14] |
Du MK, Gao Z, Li XX, Liao H (2020). Excess nitrate induces nodule greening and reduces transcript and protein expression levels of soybean leghaemoglobins. Ann Bot 126, 61-72.
DOI URL |
[15] |
Fuchsman WH, Appleby CA (1979). Separation and determination of the relative concentrations of the homogeneous components of soybean leghemoglobin by isoelectric focusing. Biochim Biophys Acta-Protein Struct 579, 314-324.
PMID |
[16] |
Fujikake H, Yamazaki A, Ohtake N, Sueyoshi K, Matsuhashi S, Ito T, Mizuniwa C, Kume T, Hashimoto S, Ishioka NS, Watanabe S, Osa A, Sekine T, Uchida H, Tsuji A, Ohyama T (2003). Quick and reversible inhibition of soybean root nodule growth by nitrate involves a decrease in sucrose supply to nodules. J Exp Bot 54, 1379-1388.
DOI URL |
[17] |
Gan YB, Stulen I, van Keulen H, Kuiper PJC (2004). Low concentrations of nitrate and ammonium stimulate nodulation and N2 fixation while inhibiting specific nodulation (nodule DW·g-1 root dry weight) and specific N2 fixation (N2 fixed·g-1 root dry weight) in soybean. Plant Soil 258, 281-292.
DOI URL |
[18] |
Garrocho-Villegas V, Gopalasubramaniam SK, Arredondo- Peter R (2007). Plant hemoglobins: what we know six decades after their discovery. Gene 398, 78-85.
PMID |
[19] |
Gautrat P, Laffont C, Frugier F, Ruffel S (2021). Nitrogen systemic signaling: from symbiotic nodulation to root acquisition. Trends Plant Sci 26, 392-406.
DOI PMID |
[20] |
Hargrove MS, Brucker EA, Stec B, Sarath G, Arredondo-Peter R, Klucas RV, Olson JS, Phillips GN Jr (2000). Crystal structure of a nonsymbiotic plant hemoglobin. Structure 8, 1005-1014.
PMID |
[21] |
Herridge DF, Peoples MB, Boddey RM (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1-18.
DOI URL |
[22] |
Hoy JA, Hargrove MS (2008). The structure and function of plant hemoglobins. Plant Physiol Biochem 46, 371-379.
DOI URL |
[23] |
Khan AA, Khan AA (1981). Effects of nitrate nitrogen on growth, nodulation and distribution of 14C-labelled photosynthates in cowpea. Plant Soil 63, 141-147.
DOI URL |
[24] |
LaRue TA, Child JJ (1979). Sensitive fluorometric assay for leghemoglobin. Anal Biochem 92, 11-15.
PMID |
[25] |
Li X, Feng H, Wen JQ, Dong JL, Wang T (2018a). MtCAS31 aids symbiotic nitrogen fixation by protecting the leghemoglobin MtLb120-1 under drought stress in Medicago truncatula. Front Plant Sci 9, 633.
DOI URL |
[26] | Li XX, Zhao J, Tan ZY, Zeng RS, Liao H (2015). GmEXPB2, a cell wall β-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiol 169, 2640-2653. |
[27] |
Li XX, Zheng JK, Yang YQ, Liao H (2018b). INCREASING NODULE SIZE 1 expression is required for normal rhizobial symbiosis and nodule development. Plant Physiol 178, 1233-1248.
DOI URL |
[28] | Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G (2010). An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J 63, 86-99. |
[29] |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408.
PMID |
[30] |
Marcker A, Lund M, Jensen EØ, Marcker KA (1984). Transcription of the soybean leghemoglobin genes during nodule development. EMBO J 3, 1691-1695.
PMID |
[31] |
Minchin FR, Minguez MI, Sheehy JE, Witty JF, Skøt L (1986). Relationships between nitrate and oxygen supply in symbiotic nitrogen fixation by white clover. J Exp Bot 37, 1103-1113.
DOI URL |
[32] |
Navascués J, Pérez-Rontomé C, Gay M, Marcos M, Yang F, Walker FA, Desbois A, Abián J, Becana M (2012). Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules. Proc Natl Acad Sci USA 109, 2660-2665.
DOI URL |
[33] |
Ott T, Sullivan J, James EK, Flemetakis E, Günther C, Gibon Y, Ronson C, Udvardi M (2009). Absence of symbiotic leghemoglobins alters bacteroid and plant cell differentiation during development of Lotus japonicus root nodules. Mol Plant Microbe Interact 22, 800-808.
DOI URL |
[34] |
Ott T, van Dongen JT, Günther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK (2005). Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15, 531-535.
DOI URL |
[35] |
Prudent M, Vernoud V, Girodet S, Salon C (2016). How nitrogen fixation is modulated in response to different water availability levels and during recovery: a structural and functional study at the whole plant level. Plant Soil 399, 1-12.
DOI URL |
[36] |
Sainz M, Calvo-Begueria L, Pérez-Rontomé C, Wienkoop S, Abián J, Staudinger C, Bartesaghi S, Radi R, Becana M (2015). Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism. Plant J 81, 723-735.
DOI URL |
[37] |
Sinclair TR, Serraj R (1995). Legume nitrogen fixation and drought. Nature 378, 344.
DOI URL |
[38] |
Stasolla C, Hill RD (2017). Determining cellular responses: phytoglobins may direct the traffic. Trends Plant Sci 22, 820-822.
DOI PMID |
[39] |
Vázquez-Limón C, Hoogewijs D, Vinogradov SN, Arredondo-Peter R (2012). The evolution of land plant hemoglobins. Plant Sci 191-192, 71-81.
DOI PMID |
[40] |
Virtanen AI, Laine T (1946). Red, brown and green pigments in leguminous root nodules. Nature 157, 25-26.
DOI URL |
[41] |
Xia X, Ma CM, Dong SK, Xu Y, Gong ZP (2017). Effects of nitrogen concentrations on nodulation and nitrogenase activity in dual root systems of soybean plants. Soil Sci Plant Nutr 63, 470-482.
DOI URL |
[42] |
Xu HY, Li YJ, Zhang KF, Li MJ, Fu SY, Tian YZ, Qin TF, Li XX, Zhong YJ, Liao H (2021). miR169c-NFYA-C-ENOD40 modulates nitrogen inhibitory effects in soybean nodulation. New Phytol 229, 3377-3392.
DOI URL |
[43] |
Zhang H, Zeng FP, Zou ZG, Zhang ZQ, Li YZ (2017). Nitrogen uptake and transfer in a soybean/maize intercropping system in the karst region of southwest China. Ecol Evol 7, 8419-8426.
DOI URL |
[1] | Jiaxin Chen, Hao Mei, Caixiang Huang, Zongyuan Liang, Yitong Quan, Dongpeng Li, Buweimaieryemu·Saimaiti , Xinxin Li, Hong Liao. A Highly Efficient Method to Generate Chimeric Soybean Plant with Transgenic Hairy Roots [J]. Chinese Bulletin of Botany, 2024, 59(1): 89-98. |
[2] | Yunhui Wang, Yifan Wang, Jiayu Lin, Jinhong Li, Shien Yao, Xiangchi Feng, Zhenlin Cao, Jun Wang, Meina Li. Plant Kinesin: from Microtubule Arrays to Physiological Regulation [J]. Chinese Bulletin of Botany, 2022, 57(3): 358-374. |
[3] | Chen Shao, Yaoqi Li, Ao Luo, Zhiheng Wang, Zhenxiang Xi, Jianquan Liu, Xiaoting Xu. Relationship between functional traits and genome size variation of angiosperms with different life forms [J]. Biodiv Sci, 2021, 29(5): 575-585. |
[4] | WANG Yin-Liu, GENG Qian-Qian, HUANG Jian-Hui, WANG Chang-Hui, LI Lei, HASI Muqier, NIU Guo-Xiang. Effects of nitrogen addition and planting density on the growth and biological nitrogen fixation of Lespedeza davurica [J]. Chin J Plant Ecol, 2021, 45(1): 13-22. |
[5] | Zhengjun Xia, Yuzhuo Li, Jinlong Zhu, Hongyan Wu, Kun Xu, Hong Zhai. A Rapid, Non-destructive and Continuous Sampling Technique and DNA Extraction for Soybean Seed [J]. Chinese Bulletin of Botany, 2021, 56(1): 56-61. |
[6] | Yan Wang, Bowei Jia, Mingzhe Sun, Xiaoli Sun. Advances in Molecular Mechanisms of Stress Tolerance in Wild Soybean [J]. Chinese Bulletin of Botany, 2021, 56(1): 104-115. |
[7] | Chengwu Liu, Zhong Zhao. The Legume SHR-SCR Module Predetermines Nodule Founder Cell Identity [J]. Chinese Bulletin of Botany, 2020, 55(6): 661-665. |
[8] | Guangtao Zhu,Sanwen Huang. A 360-degree Scanning of Population Genetic Variations—a Pan-genome Study of Soybean [J]. Chinese Bulletin of Botany, 2020, 55(4): 403-406. |
[9] | Feng Feng,Yong Zhan,Zhixi Tian. The Feasibility and Recommendation for Improving Soybean Production in Xinjiang [J]. Chinese Bulletin of Botany, 2020, 55(2): 199-204. |
[10] | WANG Xue-Mei, YAN Bang-Guo, SHI Liang-Tao, LIU Gang-Cai. Different responses of biomass allocation and leaf traits of Dodonaea viscosa to concentrations of nitrogen and phosphorus [J]. Chin J Plant Ecol, 2020, 44(12): 1247-1261. |
[11] | Kang Tang,Ruolin Yang. Origin and Evolution of Soybean Protein-coding Genes [J]. Chinese Bulletin of Botany, 2019, 54(3): 316-327. |
[12] | Ai Wenqin, Jiang Hanyuan, Li Xinxin, Liao Hong. An Efficient Nutrient Solution System to Study Symbiotic Nitrogen Fixation in Soybean [J]. Chinese Bulletin of Botany, 2018, 53(4): 519-527. |
[13] | Guodong Wu, Yu Xiu, Huafang Wang. Breeding of MtDREB2A Transgenic Soybean by an Optimized Cotyledonary-Node Method [J]. Chinese Bulletin of Botany, 2018, 53(1): 59-71. |
[14] | Yan Li, Junyi Gai. The Genetic Basis of Soybean Extended to Tropical Regions [J]. Chinese Bulletin of Botany, 2017, 52(4): 389-393. |
[15] | Zhengjun Xia. Research Progress in Whole-genome Analysis and Cloning of Genes Underlying Important Agronomic Traits in Soybean [J]. Chinese Bulletin of Botany, 2017, 52(2): 148-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||