Chinese Bulletin of Botany ›› 2021, Vol. 56 ›› Issue (4): 462-469.DOI: 10.11983/CBB20194
• SPECIAL TOPICS • Previous Articles Next Articles
Qiuxin Li1,2, Wei Chi1,2, Daili Ji1,*()
Received:
2020-11-30
Accepted:
2021-03-01
Online:
2021-07-01
Published:
2021-06-30
Contact:
Daili Ji
Qiuxin Li, Wei Chi, Daili Ji. Research Progress of CURT1 on Regulating Thylakoid Membrane Curvature[J]. Chinese Bulletin of Botany, 2021, 56(4): 462-469.
Figure 1 The plasticity of thylakoid ultrastructure (A) Effects of CURT1 levels on granum dimensions: With the level of CURT1 proteins increased, the grana displays more layers of membrane and decreased diameter; Grana without CURT1 proteins significantly increased in diameter but contain far fewer layers of membrane; (B) Effects of changes in light conditions on granum dimensions: under low light levels, the numbers of layers in grana stacks are increased, and high light intensities lead to significant reduction in the diameter, and to partial transversal unstacking of grana discs; (C) Effects of PSII phosphorylation on granum dimensions: increased levels of PSII phosphorylation lead to significant reduction in the diameter, the enlargement of the vertical gaps between thylakoid layers, and swelling of the thylakoid lumen; Decreased levels of PSII phosphorylation lead to increased diameter, decreased gaps of adjacent layers within the granum, and fewer layers of membrane. LL: Low light; HL: High light; PSII: Photosystem II; LHC II: Light-harvesting complex II; CURT1: CURVATURE THYLAKOID 1
Figure 3 CURT1 modulate grana structure to regulate photosynthesis in response to different light conditions Overexpression or knock out of CURT1 protein influence the PSII repair process under high light condition and state transition during low light condition. PSI: Photosystem I. PSII, LHCII and CURT1 see Figure 1.
[1] | 代玉华, 刘训言, 孟庆伟, 赵世杰 (2004). 低温胁迫对类囊体膜脂代谢的影响. 植物学通报 21, 506-511. |
[2] | 付振书, 赵世杰, 孟庆伟 (2004). 类囊体腔的酸化与过剩激发能耗散. 植物学通报 21, 486-494. |
[3] |
Alimohamadi H, Rangamani P (2018). Modeling membrane curvature generation due to membrane-protein interactions. Biomolecules 8, 120.
DOI URL |
[4] |
Anderson JM (1986). Photoregulation of the composition, function, and structure of thylakoid membranes. Annu Rev Plant Physiol 37, 93-136.
DOI URL |
[5] |
Armbruster U, Labs M, Pribil M, Viola S, Xu WT, Scharfenberg M, Hertle AP, Rojahn U, Jensen PE, Rappaport F, Joliot P, Dörmann P, Wanner G, Leister D (2013). Arabidopsis CURVATURE THYLAKOID 1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25, 2661-2678.
DOI URL |
[6] |
Austin II JR, Staehelin LA (2011). Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant Physiol 155, 1601-1611.
DOI URL |
[7] |
Chuartzman SG, Nevo R, Shimoni E, Charuvi D, Kiss V, Ohad I, Brumfeld V, Reich Z (2008). Thylakoid membrane remodeling during state transitions in Arabidopsis. Plant Cell 20, 1029-1039.
DOI PMID |
[8] |
Daum B, Kühlbrandt W (2011). Electron tomography of plant thylakoid membranes. J Exp Bot 62, 2393-2402.
DOI URL |
[9] |
Gkeka P, Sarkisov L (2010). Interactions of phospholipid bilayers with several classes of amphiphilic α-helical peptides: insights from coarse-grained molecular dynamics simulations. J Phys Chem B 114, 826-839.
DOI URL |
[10] |
Hansson M, Vener AV (2003). Identification of three previously unknown in vivo protein phosphorylation sites in thylakoid membranes of Arabidopsis thaliana. Mol Cell Proteomics 2, 550-559.
PMID |
[11] |
Heinz S, Rast A, Shao L, Gutu A, Gügel IL, Heyno E, Labs M, Rengstl B, Viola S, Nowaczyk MM, Leister D, Nickelsen J (2016). Thylakoid membrane architecture in Synechocystis depends on CurT, a homolog of the granal CURVATURE THYLAKOID1 proteins. Plant Cell 28, 2238-2260.
DOI URL |
[12] |
Jarsch IK, Daste F, Gallop JL (2016). Membrane curvature in cell biology: an integration of molecular mechanisms. J Cell Biol 214, 375-387.
DOI PMID |
[13] | Jensen PE, Leister D (2014). Chloroplast evolution, structure and functions. F1000Prime Rep 6, 40. |
[14] |
Kirchhoff H (2013). Architectural switches in plant thylakoid membranes. Photosynth Res 116, 481-487.
DOI URL |
[15] | Kirchhoff H (2014). Structural changes of the thylakoid membrane network induced by high light stress in plant chloroplasts. Philos Trans R Soc Lond B Biol Sci 369, 20130225. |
[16] |
Kirchhoff H (2018). Structure-function relationships in photosynthetic membranes: challenges and emerging fields. Plant Sci 266, 76-82.
DOI PMID |
[17] |
Kirchhoff H (2019). Chloroplast ultrastructure in plants. New Phytol 223, 565-574.
DOI PMID |
[18] |
Könnel A, Bugaeva W, Gügel IL, Philippar K (2019). BANFF: bending of bilayer membranes by amphiphilic α-helices is necessary for form and function of organelles. Biochem Cell Biol 97, 243-256.
DOI URL |
[19] |
Lambrev PH, Akhtar P (2019). Macroorganisation and flexibility of thylakoid membranes. Biochem J 476, 2981-3018.
DOI PMID |
[20] |
Mareš J, Strunecký O, Bučinská L, Wiedermannová J (2019). Evolutionary patterns of thylakoid architecture in cyanobacteria. Front Microbiol 10, 277.
DOI PMID |
[21] |
McMahon HT, Boucrot E (2015). Membrane curvature at a glance. J Cell Sci 128, 1065-1070.
DOI PMID |
[22] |
McMahon HT, Gallop JL (2005). Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590-596.
DOI URL |
[23] |
Nixon PJ, Michoux F, Yu JF, Boehm M, Komenda J (2010). Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106, 1-16.
DOI URL |
[24] |
Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJG, Evans PR, McMahon HT (2004). BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495-499.
DOI URL |
[25] |
Pribil M, Labs M, Leister D (2014). Structure and dynamics of thylakoids in land plants. J Exp Bot 65, 1955-1972.
DOI URL |
[26] |
Pribil M, Sandoval-Ibáñez O, Xu WT, Sharma A, Labs M, Liu QP, Galgenmüller C, Schneider T, Wessels M, Matsubara S, Jansson S, Wanner G, Leister D (2018). Fine-tuning of photosynthesis requires CURVATURE THYLAKOID1-mediated thylakoid plasticity. Plant Physiol 176, 2351-2364.
DOI URL |
[27] |
Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z (2005). Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17, 2580-2586.
PMID |
[28] |
Stengel A, Gügel IL, Hilger D, Rengstl B, Jung H, Nickelsen J (2012). Initial steps of photosystem II de novo assembly and preloading with manganese take place in biogenesis centers in Synechocystis. Plant Cell 24, 660-675.
DOI URL |
[29] |
Trotta A, Bajwa AA, Mancini I, Paakkarinen V, Pribil M, Aro EM (2019). The role of phosphorylation dynamics of CURVATURE THYLAKOID 1B in plant thylakoid membranes. Plant Physiol 181, 1615-1631.
DOI URL |
[30] |
Wood WHJ, Barnett SFH, Flannery S, Hunter CN, Johnson MP (2019). Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with PSI. Plant Physiol 180, 2152-2166.
DOI URL |
[1] | Fei Du, Yuling Jiao. WUSCHEL-mediated Innate Immunity in Plant Stem Cells Provides a Novel Antiviral Strategy [J]. Chinese Bulletin of Botany, 2020, 55(5): 537-540. |
[2] | Liang Wu, Yijun Qi. Small RNA, No Small Feat: Plants Deploy 22 nt siRNAs to Cope with Environmental Stress [J]. Chinese Bulletin of Botany, 2020, 55(3): 270-273. |
[3] | Hua Zhao,Guangda Shao,Wenxin Gao,Biao Gu. The Application of Double-barreled Particle Bombardment for Transient Gene Expression in Arabidopsis [J]. Chinese Bulletin of Botany, 2020, 55(2): 182-191. |
[4] | Qingping Zhao,Shifan Ma,Ruixi Li,Tianyu Wang,Xiang Zhao. Advances of NPH3/RPT2-Like (NRL) Family Proteins in Phototropin-mediated Signaling in Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2020, 55(2): 240-253. |
[5] | Gaoping Qu,Jingbo Jin. Detection of SUMOylation in Plants [J]. Chinese Bulletin of Botany, 2020, 55(1): 83-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||