Chinese Bulletin of Botany ›› 2021, Vol. 56 ›› Issue (4): 470-479.DOI: 10.11983/CBB20178
• SPECIAL TOPICS • Previous Articles Next Articles
Zhaoyu Zhang1,2,3, Qingyun Wang4, Lei Shi3, Wengang Yu4, Yongqing Zhang1,2,*(), Hongxia Cui3,*(
)
Received:
2020-11-11
Accepted:
2021-04-19
Online:
2021-07-01
Published:
2021-06-30
Contact:
Yongqing Zhang,Hongxia Cui
Zhaoyu Zhang, Qingyun Wang, Lei Shi, Wengang Yu, Yongqing Zhang, Hongxia Cui. Secondary Metabolites of Syringa and the Linking with Phylogenetic Evolution and Geographical Distributions[J]. Chinese Bulletin of Botany, 2021, 56(4): 470-479.
组系 | 物种 | 自然分布 | 海拔(m) | 经度(E) | 纬度(N) | 生态幅 |
---|---|---|---|---|---|---|
欧丁香系 (Ser. Syringa) | 欧洲丁香(S. vulgaris) | 东南欧(阿尔卑斯山和喀尔巴阡山) | 1000-1200 | 5°36'-66°10' | 36°00'-67°46' | 广布种 |
紫丁香(S. oblata) | 中国东北、华北、西北、华东和川西北 | 300-2400 | 96°23'-135°02' | 34°19'-55°33' | 广布种 | |
朝阳丁香(S. oblata var. dilatata) | 中国华北-东北-朝鲜半岛 | 300-2400 | 40°51'-129°40' | 33°56'-53°19' | 广布种 | |
阿富汗丁香(S. afghanica) | 中国青海-阿富汗 | 60°29'-74°53' | 29°21'-38°27' | 局域种 | ||
羽叶丁香系 (Ser. Pinnatifoliae) | 羽叶丁香(S. pinnatifolia) | 贺兰山、陕西南部、甘肃、青海东部和四川南部 | 1700-3100 | 105°13'-112°32' | 26°03'-37°09' | 局域种 |
短花冠管组 (Sect. Ligustrina) | 暴马丁香(S. amurensis) | 中国东北和西北, 俄罗斯远东地区, 朝鲜 | 100-1200 | 103°04'-163°19' | 31°09'-72°33' | 广布种 |
日本丁香(S. reticulata) | 日本北部(北海道地区) | 139°20'-148°53' | 40°33'-45°33' | 局域种 | ||
巧玲花系 (Ser. Pubescentes) | 巧玲花(S. pubescens) | 河北、陕西东部、山西东部和河南 | 900-2100 | 109°29'-119°53' | 31°23'-42°37' | 局域种 |
关东丁香(S. velutina) | 辽宁和吉林长白山区 | 300-1200 | 118°53'-135°05' | 38°43'-53°33' | 局域种 | |
红丁香系 (Ser. Villosae) | 西蜀丁香(S. komarowii) | 甘肃南部、陕西南部、 四川和云南北部 | 105°31'-114°11' | 24°20'-35°28' | 局域种 | |
辽东丁香(S. wolfii) | 中国东北, 朝鲜 | 500-1600 | 118°53'-128°28' | 37°35'-72°33' | 局域种 |
Table 1 Geographical distributions of Syringa with secondary metabolites reported
组系 | 物种 | 自然分布 | 海拔(m) | 经度(E) | 纬度(N) | 生态幅 |
---|---|---|---|---|---|---|
欧丁香系 (Ser. Syringa) | 欧洲丁香(S. vulgaris) | 东南欧(阿尔卑斯山和喀尔巴阡山) | 1000-1200 | 5°36'-66°10' | 36°00'-67°46' | 广布种 |
紫丁香(S. oblata) | 中国东北、华北、西北、华东和川西北 | 300-2400 | 96°23'-135°02' | 34°19'-55°33' | 广布种 | |
朝阳丁香(S. oblata var. dilatata) | 中国华北-东北-朝鲜半岛 | 300-2400 | 40°51'-129°40' | 33°56'-53°19' | 广布种 | |
阿富汗丁香(S. afghanica) | 中国青海-阿富汗 | 60°29'-74°53' | 29°21'-38°27' | 局域种 | ||
羽叶丁香系 (Ser. Pinnatifoliae) | 羽叶丁香(S. pinnatifolia) | 贺兰山、陕西南部、甘肃、青海东部和四川南部 | 1700-3100 | 105°13'-112°32' | 26°03'-37°09' | 局域种 |
短花冠管组 (Sect. Ligustrina) | 暴马丁香(S. amurensis) | 中国东北和西北, 俄罗斯远东地区, 朝鲜 | 100-1200 | 103°04'-163°19' | 31°09'-72°33' | 广布种 |
日本丁香(S. reticulata) | 日本北部(北海道地区) | 139°20'-148°53' | 40°33'-45°33' | 局域种 | ||
巧玲花系 (Ser. Pubescentes) | 巧玲花(S. pubescens) | 河北、陕西东部、山西东部和河南 | 900-2100 | 109°29'-119°53' | 31°23'-42°37' | 局域种 |
关东丁香(S. velutina) | 辽宁和吉林长白山区 | 300-1200 | 118°53'-135°05' | 38°43'-53°33' | 局域种 | |
红丁香系 (Ser. Villosae) | 西蜀丁香(S. komarowii) | 甘肃南部、陕西南部、 四川和云南北部 | 105°31'-114°11' | 24°20'-35°28' | 局域种 | |
辽东丁香(S. wolfii) | 中国东北, 朝鲜 | 500-1600 | 118°53'-128°28' | 37°35'-72°33' | 局域种 |
代谢产物类别 | 欧丁香系 (Ser. Syringa) | 羽叶丁香系 (Ser. Pinnatifoliae) | 短花冠管组 (Sect. Ligustrina) | 巧玲花系 (Ser. Pubescentes) | 红丁香系 (Ser. Villosae) |
---|---|---|---|---|---|
环/裂环烯醚萜 | 96 | 6 | 17 | 9 | 2 |
倍半萜 | 8 | 46 | 6 | 10 | - |
苯丙素 | 30 | 5 | 11 | 8 | 8 |
木脂素 | 5 | 58 | 8 | 1 | 5 |
黄酮 | 8 | - | - | 5 | - |
三萜 | 15 | 8 | 2 | 2 | 12 |
单萜 | 3 | - | - | - | - |
脂肪酸 | 3 | - | - | - | - |
醌类 | - | 2 | - | - | - |
生物碱 | - | - | - | 1 | 3 |
合计 | 168 | 125 | 44 | 36 | 30 |
Table 2 The classification and count of secondary metabolites in Syringa at the level of series (section) (unit: number of components)
代谢产物类别 | 欧丁香系 (Ser. Syringa) | 羽叶丁香系 (Ser. Pinnatifoliae) | 短花冠管组 (Sect. Ligustrina) | 巧玲花系 (Ser. Pubescentes) | 红丁香系 (Ser. Villosae) |
---|---|---|---|---|---|
环/裂环烯醚萜 | 96 | 6 | 17 | 9 | 2 |
倍半萜 | 8 | 46 | 6 | 10 | - |
苯丙素 | 30 | 5 | 11 | 8 | 8 |
木脂素 | 5 | 58 | 8 | 1 | 5 |
黄酮 | 8 | - | - | 5 | - |
三萜 | 15 | 8 | 2 | 2 | 12 |
单萜 | 3 | - | - | - | - |
脂肪酸 | 3 | - | - | - | - |
醌类 | - | 2 | - | - | - |
生物碱 | - | - | - | 1 | 3 |
合计 | 168 | 125 | 44 | 36 | 30 |
代谢产物类别 | 欧丁香系 (Ser. Syringa) | 羽叶丁香系 (Ser. Pinna tifoliae) | 短花冠管组 (Sect. Ligustrina) | 巧玲花系 (Ser. Pubescentes) | 红丁香系 (Ser. Villosae) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
欧洲丁香 (S. vulgaris) | 紫丁香 (S. ob- lata) | 朝阳丁香 (S. oblata var. dilatata) | 阿富汗丁香 (S. afghanica) | 羽叶丁香 (S. pinnatifolia) | 暴马丁香 (S. amu- rensis) | 日本丁香 (S. reticulata) | 关东丁香 (S. velutina) | 巧玲花 (S. pubescens) | 辽东丁香 (S.wolfii) | 西蜀丁香 (S. komarowii) | |
环/裂环烯醚萜 | 60 | 16 | 10 | 20 | 6 | 13 | 5 | 7 | 3 | - | 2 |
倍半萜 | - | 6 | 2 | - | 46 | 6 | - | - | 10 | - | - |
苯丙素 | 28 | 3 | - | - | 5 | 6 | 5 | 7 | 1 | - | 8 |
木脂素 | 5 | - | - | - | 58 | 1 | 7 | 1 | - | - | 5 |
黄酮 | 5 | 5 | - | - | - | - | - | 5 | - | - | - |
三萜 | - | 14 | 2 | - | 8 | 2 | - | 2 | - | 2 | 10 |
单萜 | - | 3 | - | - | - | - | - | - | - | - | - |
脂肪酸 | 1 | 2 | - | - | - | - | - | - | - | - | - |
醌类 | - | - | - | - | 2 | - | - | - | - | - | - |
生物碱 | - | - | - | - | - | - | - | 1 | - | - | 3 |
合计 | 99 | 49 | 14 | 20 | 125 | 28 | 17 | 23 | 14 | 2 | 28 |
Table 3 The classification and count of secondary metabolites in Syringa at the level of species (unit: number of compound)
代谢产物类别 | 欧丁香系 (Ser. Syringa) | 羽叶丁香系 (Ser. Pinna tifoliae) | 短花冠管组 (Sect. Ligustrina) | 巧玲花系 (Ser. Pubescentes) | 红丁香系 (Ser. Villosae) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
欧洲丁香 (S. vulgaris) | 紫丁香 (S. ob- lata) | 朝阳丁香 (S. oblata var. dilatata) | 阿富汗丁香 (S. afghanica) | 羽叶丁香 (S. pinnatifolia) | 暴马丁香 (S. amu- rensis) | 日本丁香 (S. reticulata) | 关东丁香 (S. velutina) | 巧玲花 (S. pubescens) | 辽东丁香 (S.wolfii) | 西蜀丁香 (S. komarowii) | |
环/裂环烯醚萜 | 60 | 16 | 10 | 20 | 6 | 13 | 5 | 7 | 3 | - | 2 |
倍半萜 | - | 6 | 2 | - | 46 | 6 | - | - | 10 | - | - |
苯丙素 | 28 | 3 | - | - | 5 | 6 | 5 | 7 | 1 | - | 8 |
木脂素 | 5 | - | - | - | 58 | 1 | 7 | 1 | - | - | 5 |
黄酮 | 5 | 5 | - | - | - | - | - | 5 | - | - | - |
三萜 | - | 14 | 2 | - | 8 | 2 | - | 2 | - | 2 | 10 |
单萜 | - | 3 | - | - | - | - | - | - | - | - | - |
脂肪酸 | 1 | 2 | - | - | - | - | - | - | - | - | - |
醌类 | - | - | - | - | 2 | - | - | - | - | - | - |
生物碱 | - | - | - | - | - | - | - | 1 | - | - | 3 |
合计 | 99 | 49 | 14 | 20 | 125 | 28 | 17 | 23 | 14 | 2 | 28 |
Figure 1 Proportion of secondary metabolites in Syringa at the level of series (section) The color in the block progressively varying from dark to light represents the continuous change in the percentage of components in the series (section) from high to low (the percentage of specific type of components in a series (section) = the number of specific type of components in a series (section)/the total number of components in this series (section)). The products of the same type include different components with the same parent nucleus but different in substituent groups, group numbers, group positions and conformations. The different color-stipes below the heatmap represent different types of products. In order to ensure the objective counting of the components, at least three reference were required for the metabolite information of each species. Therefore, the S. afghanica in Ser. Syringa as well as the S. wolfii and S. komarowii in Ser. Villosae has not been included because only one related reference was found.
Figure 2 The phylogenetic relationship of Syringa, and the percentage of metabolites and their main metabolic pathways at the level of series (section) (A) The phylogenetic relationship (Li et al., 2012) and percentage of metabolites of Syringa at the level of series (section); (B) Mevalonic acid pathway (MVA) and Deoxyxylulose-5-P pathway (DXP) (Mint Evolutionary Genomics Consortium, 2018); (C) Shikimic acid pathway (Liu et al., 2016; Zhang et al., 2019, in Chinese). The color-stripes below the series (section) indicate different types of metabolites in (A), and the percentage in the color-stripe represents the percentage of a given type of compounds within the series (section) (please see Figure 1 for details). The meanings of the color frames indicating the compound in (B) and (C) are the same as those of (A). The dotted lines in (B) and (C) represent the process of multi-step reactions.
[1] | 崔洪霞, 蒋高明, 臧淑英 (2004). 丁香属植物的地理分布及其起源演化. 植物研究 (02), 141-145. |
[2] | 董娟娥, 张康健, 梁宗锁 (2009). 植物次生代谢与调控. 杨凌: 西北农林科技大学出版社. pp. 102-119. |
[3] | 杜玮炜, 黄宏文 (2008). 雷公藤次生代谢产物雷公藤红素含量与环境因子相关性分析. 植物学通报 25, 707-713. |
[4] | 高坤, 常金科, 黎家 (2018). 植物根向水性反应研究进展. 植物学报 53, 154-163. |
[5] | 高艳, 崔洪霞, 石雷, 曲延英 (2008). 丁香属植物叶片表皮形态特征与环境适应及系统学关联. 西北植物学报 28, 475-484. |
[6] | 刘津, 于思礼, 马雅婷, 张铁军, 赵广荣 (2016). 天然木脂素的代谢工程和合成生物学研究进展. 中草药 47, 2556-2562. |
[7] |
刘盟盟, 贾丽, 程路芸, 张洪芹, 臧晓琳, 宝音陶格涛, 张汝民, 高岩 (2017). 冷蒿酚酸及其抗氧化防御酶活性对机械损伤的响应. 植物生态学报 41, 219-230.
DOI |
[8] | 刘晓侠, 刘吉利, 吴娜, 相宗杰, 刘根红, 康建宏 (2015). 不同地域枸杞主要次生代谢物含量与初生代谢物含量的关系研究. 北方园艺 (23), 163-169. |
[9] | 苏国柱, 陈洁, 曹愿, 白睿峰, 陈苏依勒, 屠鹏飞, 柴兴云 (2015). 蒙药山沉香的化学成分和药理活性研究进展. 中国中药杂志 40, 4333-4338. |
[10] | 王宇希 (2013). 丁香叶总黄酮的提取工艺及抑菌效果评价. 硕士论文. 哈尔滨: 东北农业大学. pp. 8-23. |
[11] | 魏华, 王岩, 刘宝辉, 王雷 (2018). 植物生物钟及其调控生长发育的研究进展. 植物学报 53, 456-467. |
[12] | 杨然, 方磊, 李佳, 张永清 (2018). 环烯醚萜苷类生物合成途径及相关酶的研究进展. 中草药 49, 2482-2488. |
[13] | 藏淑英, 李容辉 (1992). 论丁香属植物引种的现状与前景. 植物学通报 (2), 30-33. |
[14] | 张美珍, 缪柏茂, 陆瑞林, 邱莲卿, 韦直, 李秉滔 (1992). 中国植物志, 第61卷. 北京: 科学出版社. pp. 155-156. |
[15] | 张旭, 王小佳, 黎思辰, 董甜甜, 汪志辉 (2019). 柑橘果实粒化过程中木质素生物合成与调控研究进展. 浙江农业学报 31, 2131-2140. |
[16] | 张永增 (2018). 次生代谢产物在种子植物生命之树中的分布规律. 博士论文. 昆明: 云南大学. pp. 20-44. |
[17] | 祝志欣, 鲁迎青 (2016). 花青素代谢途径与植物颜色变异. 植物学报 51, 107-119. |
[18] |
Allevato DM, Groppo M, Kiyota E, Mazzafera P, Nixon KC (2019). Evolution of phytochemical diversity in Pilocarpus (Rutaceae). Phytochemistry 163, 132-146.
DOI URL |
[19] |
Chadwick M, Trewin H, Gawthrop F, Wagstaff C (2013). Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14, 12780-12805.
DOI PMID |
[20] |
Chen F, Tholl D, Bohlmann J, Pichersky E (2011). The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66, 212-229.
DOI URL |
[21] | Chen YG, Mulder PPJ, Schaap O, Memelink J, Klinkhamer PGL, Vrieling K (2020). The evolution of pyrrolizidine alkaloid diversity among and within Jacobaea species. J Syst Evol doi: 10.1111/jse.12671. |
[22] |
Cui HX, Cong SH, Wang XZ, Hao HP, Shi L, Zhang HJ, Li ZG, Hu TH, Qin YS (2016). Mechanistic examination of causes for narrow distribution in an endangered shrub: a comparison of its responses to drought stress with a widespread congeneric species. Trees 30, 2227-2236.
DOI URL |
[23] |
Ernst M, Saslis-Lagoudakis CH, Grace OH, Nilsson N, Simonsen HT, Horn JW, Rønsted N (2016). Evolutionary prediction of medicinal properties in the genus Euphorbia L. Sci Rep 6, 30531.
DOI URL |
[24] | Fiala JL (2008). Lilacs. Portland, London: Timber Press. pp. 1-508. |
[25] |
Filipek A, Wyszomierska J, Michalak B, Kiss AK (2019). Syringa vulgaris bark as a source of compounds affecting the release of inflammatory mediators from human neutrophils and monocytes/macrophages. Phytochem Lett 30, 309-313.
DOI URL |
[26] |
Gaylord ML, Kolb TE, Pockman WT, Plaut JA, Yepez EA, Macalady AK, Pangle RE, McDowell NG (2013). Drought predisposes piñon-juniper woodlands to insect attacks and mortality. New Phytol 198, 567-578.
DOI PMID |
[27] | Guitton Y, Nicolè F, Jullien F, Caissard JC, Saint-Marcoux D, Legendre L, Pasquier B, Moja S (2018). A comparative study of terpene composition in different clades of the genus Lavandula. Bot Lett 165, 494-505. |
[28] |
Kim KJ, Jansen RK (1998). A chloroplast DNA phylogeny of lilacs (Syringa, Oleaceae): plastome groups show a strong correlation with crossing groups. Am J Bot 85, 1338-1351.
PMID |
[29] |
Konno K, Hirayama C, Yasui H, Nakamura M (1999). Enzymatic activation of oleuropein: a protein crosslinker used as a chemical defense in the privet tree. Proc Natl Acad Sci USA 96, 9159-9164.
DOI URL |
[30] |
Lendvay B, Kadereit JW, Westberg E, Cornejo C, Pedryc A, Höhn M (2016). Phylogeography of Syringa josikaea (Oleaceae): Early Pleistocene divergence from East Asian relatives and survival in small populations in the Carpathians. Biol J Linn Soc 119, 689-703.
DOI URL |
[31] |
Li JH, Goldman-Huertas B, DeYoung J, Alexander J (2012). Phylogenetics and diversification of Syringa inferred from nuclear and plastid DNA sequences. Castanea 77, 82-88.
DOI URL |
[32] | McKelvey SD (1928). The Lilac. New York, Boston, Chicago, Dallas, Atlanta, San Francisco: The Macmillan Company. pp.1-121. |
[33] |
Mint Evolutionary Genomics Consortium (2018). Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in Lamiaceae. Mol Plant 11, 1084-1096.
DOI URL |
[34] | Rehder A (1940). Manual of Cultivated Trees and Shrubs. New York:Macmillan. pp. 777-783. |
[35] |
Rønsted N, Savolainen V, Mølgaard P, Jäger AK (2008). Phylogenetic selection of Narcissus species for drug discovery. Biochem Syst Ecol 36, 417-422.
DOI URL |
[36] |
Sedio BE (2017). Recent breakthroughs in metabolomics promise to reveal the cryptic chemical traits that mediate plant community composition, character evolution and lineage diversification. New Phytol 214, 952-958.
DOI URL |
[37] |
Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng BS (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24, 2452.
DOI URL |
[38] | Thakur M, Bhattacharya S, Khosla PK, Puri S (2019). Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aroma Plants 12, 1-12. |
[39] |
Varga E, Barabás C, Tóth A, Boldizsár I, Noszál B, Tóth G (2019). Phenolic composition, antioxidant and antinociceptive activities of Syringa vulgaris L. bark and leaf extracts. Nat Prod Res 33, 1664-1669.
DOI URL |
[40] |
Vleminckx J, Salazar D, Fortunel C, Mesones I, Davila N, Lokvam J, Beckley K, Baraloto C, Fine PVA (2018). Divergent secondary metabolites and habitat filtering both contribute to tree species coexistence in the Peruvian Amazon. Front Plant Sci 9, 836.
DOI PMID |
[41] |
Wang SC, Alseekh S, Fernie AR, Luo J (2019). The structure and function of major plant metabolite modifications. Mol Plant 12, 899-919.
DOI URL |
[42] |
Xu SQ, Yao SC, Huang RS, Tan Y, Huang D (2020). Transcriptome-wide analysis of the AP2/ERF transcription factor gene family involved in the regulation of gypenoside biosynthesis in Gynostemma pentaphyllum. Plant Physiol Biochem 154, 238-247.
DOI URL |
[43] |
Zhang RF, Feng X, Su GZ, Mu ZJ, Zhang HX, Zhao YN, Jiao SG, Cao L, Chen SYL, Tu PF, Chai XF (2018). Bioactive sesquiterpenoids from the peeled stems of Syringa pinnatifolia. J Nat Prod 81, 1711-1720.
DOI URL |
[1] | Hua He, DunYan Tan, Xiaochen Yang. Cryptic dioecy in angiosperms: diversity, phylogeny and evolutionary significance [J]. Biodiv Sci, 2024, 32(6): 24149-. |
[2] | Yanyu Ai, Haixia Hu, Ting Shen, Yuxuan Mo, Jinhua Qi, Liang Song. Vascular epiphyte diversity and the correlation analysis with host tree characteristics: A case in a mid-mountain moist evergreen broad-leaved forest, Ailao Mountains [J]. Biodiv Sci, 2024, 32(5): 24072-. |
[3] | Yingli Cai, Hongge Zhu, Jiaxin Li. Biodiversity conservation in China: Policy evolution, main measures and development trends [J]. Biodiv Sci, 2024, 32(5): 23386-. |
[4] | Bei DENG feng XiaoWANG. Meta-analysis analysis the effects of environmental stress on the physiological and ecological characteristics of herbaceous and woody plants in the hydro-fluctuation belt of the Three Gorges Reservoir area [J]. Chin J Plant Ecol, 2024, 48(5): 623-637. |
[5] | Rui Qu, Zhenjun Zuo, Youxin Wang, Liangjian Zhang, Zhigang Wu, Xiujuan Qiao, Zhong Wang. The biogeochemical niche based on elementome and its applications in different ecosystems [J]. Biodiv Sci, 2024, 32(4): 23378-. |
[6] | Yanwen Lv, Ziyun Wang, Yu Xiao, Zihan He, Chao Wu, Xinsheng Hu. Advances in lineage sorting theories and their detection methods [J]. Biodiv Sci, 2024, 32(4): 23400-. |
[7] | Jixuan Yang, Xuefei Wang, Hongya Gu. Genetic Basis of Flowering Time Variations in Tibetan Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2024, 59(3): 373-382. |
[8] | Zhi Yang, Yong Yang. Research Advances on Nuclear Genomes of Economically Important Trees of Lauraceae [J]. Chinese Bulletin of Botany, 2024, 59(2): 302-318. |
[9] | Lu Zhu, Chong Yuan, Yifei Liu. Research Progress on Plant Secondary Metabolite Biosyn-thetic Gene Clusters [J]. Chinese Bulletin of Botany, 2024, 59(1): 134-143. |
[10] | Qingduo Li, Dongmei Li. Analysis for the prevalence of global bat-borne Bartonella [J]. Biodiv Sci, 2023, 31(9): 23166-. |
[11] | YANG Ming-Wei, JIN Xiao-Fang. Diversity and evolutionary ecology of nectar spurs in angiosperms [J]. Chin J Plant Ecol, 2023, 47(9): 1193-1210. |
[12] | Xiaoyun Dong, Jiaping Wei, Junmei Cui, Zefeng Wu, Guoqiang Zheng, Hui Li, Ying Wang, Haiyan Tian, Zigang Liu. Research Progress in Plant Antifreeze Protein [J]. Chinese Bulletin of Botany, 2023, 58(6): 966-981. |
[13] | Zhaoyang Jing, Keguang Cheng, Heng Shu, Yongpeng Ma, Pingli Liu. Whole genome resequencing approach for conservation biology of endangered plants [J]. Biodiv Sci, 2023, 31(5): 22679-. |
[14] | Shiyun Shen, Yuanfei Pan, Liru Chen, Yanli Tu, Xiaoyun Pan. Plant-soil feedbacks differ between native and introduced populations of Alternanthera philoxeroides [J]. Biodiv Sci, 2023, 31(3): 22436-. |
[15] | Zhenzhou Chu, Gulbar Yisilam, Zezhong Qu, Xinmin Tian. Comparative Analyses on the Chloroplast Genome of Three Sympatric Atraphaxis Species [J]. Chinese Bulletin of Botany, 2023, 58(3): 417-432. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||